GigaDevice Semiconductor Inc.

GD32VW553 BLE Development Guide

Application Note
AN152

Revision 1.0

(Nov.2023)

©

AN152
GD32VW553 BLE Development Guide

GigaDevice
Table of Contents

Table Of CONEENESouiiiiiiiii bbb aannanes 2
LiSt Of FIQUIESooeeiii e e e e e e 7
List Of TADIES ... 8
1. Overview of BLE SDK ... 9
1.1. BLE software frameWork...............oooiiiiiiii e 9
2. BLE AP ... 1
21, BLE adapter APl 1"
2.1.1. Adapter MESSAQE tYPE ...coviiiiiiieeee e 1"
2.1.2. DIE AP it —————————— 12
2.1.3. ble_adp_Callback _regQiSter...... .. —————— 12
2.1.4. DIE AP FESEY ... e —————————————— 13
2.1.5. oYL= To | o T o SRR 13
2.1.6. ble_adp_Chann_mMap _Setl 13
2.1.7. ble_adp_10C IrK _SEL .. . e —————— 14
2.1.8. Ble_adp_10C IrK QL. . o 14
2.1.9. ble_adp_identity addr_get ... 14
2.1.10. Dble_adp_Name _SEL —————————— 15
2111, ble_adp_loCal_VEr _get.......oo e 15
2.1.12. Dble_adp_sugg_dft data_len_get ... 15
2.1.13. ble_adp_tX_PWr range gel ... 15
2114, Dble_adp_max_data_len_get ... 16
2.1.15. ble_adp_adv_sets NUM_get........oo e 16
2.1.16. Dble_adp_addr _reSOIVEuuii e ————— 16
2.1.17. Dble_adp_static_random_addr_geNueiiiiiiiiiii e 17
2.1.18. Dble_adp_resolvable_private_addr _gen ... 17
2.1.19. ble_adp_none_resolvable_private_addr_gen ... 17
2.1.20. Dle AP 188t tXuuuuiiii 18
2.1.27. DIE AP 1St X it 18
2.1.22. Dble_adp teSt ©NAeeii e ———————————————— 18
2.2. BLE @QdVertiSiNg APlcooo oo e 19
2.21. AdVErtiSING MESSAGE tYPE...cii ittt e et e e e e e e e nb e 19
222 ol L= To KV o T S PR PP T PTRTPPPTT 19
2.2.3. Dle_adV_deINit.. ... e a e 20
224, DIE @AV _CrEALE ... 20
2.2.5. DIE @AV SHAIT ..o —————————— 20
2.2.6. DlIe_adV_reSTaArt e aaa e 21
227. o] L= o AV) (o] o F PP TUTRPPPR 21

‘ AN152
GigaDevice GD32VW553 BLE Development Guide
2.2.8. o] L= o AV =T 0 4T 1Y/ Y PP 22
2.2.9. ble_adv_data_UPAateooeiiiiii e 22
2.3. BLE advertising data APl ... 23
2.3.1. DlE_adV_FING...c it saee 23
2.3.2. ble_adv_cmpl_name _fiNd.........ooii e 23
2.3.3. ble_adv_short_name _fiNdoooii e 24
2.34. ble_adv_srv_UUid_fiNdoooii s 24
2.3.5. ble_adv_appearance fiNd ... 24
2.4, BLE SCAN AP ... 25
24.1. SCAN MESSAGE LYPE ..eeeieiiiiiie ittt ettt e e et e et e e b 25
24.2. DlE _SCAN_INIT....eeiiieii e 25
2.4.3. DlE_SCAN_TINIL..... i 25
244, ble_scan_callback_register ... 26
2.45. Dle_SCAN_ENADIE........coiiiiii e 26
2.4.6. Dle_SCAN_AISADIEoiiiie s 26
24.7. Dle_SCaAN_PAram_Seluiiiiiiiiii e 27
2.5, BLE connection APoooiiiiiiiiiiiiiiiiiee 27
2.5.1. COoNNECHION MESSAGE LYPE .ottt e e 27
252 o] LY ot] o 0 T o 11 O PPT PP PPPRPP 31
2.5.3. ble_conn_callback_regiStercooi i 32
2.54. ble_conn_callback _UNregiSter ... 32
2.55. BIE_CONN_CONNECT.......eeeiiiiii e e e 32
2.5.6. Dle_CONN_dISCONNECE ..ot e e e s 33
25.7. ble_conn_conNECt_CaANCEooiiiiiii e 33
2.5.8. ble_CoNN_SEC_INTO_SEL.....oiiiiiiiii s 33
2.5.9. ble_conn_peer_Name_get..........oo e 34
2.5.10. ble_conn_peer_feats get ... 34
2.5.11. Dble_conn_peer_appearanCe_geLt..........ocoiiiiiiiiiiiiiiie e 35
2.5.12. ble_conn_peer_VEersion_get ...ttt 35
2.5.13. Dble_conn_peer_slave_prefer_param_get.........cccoiiiiiiiiiiiiii 36
2.5.14. Dble_conn_peer_addr_resolution_support_get..........cccceeiiiiiiiiiiiie e 36
2.5.15. ble_conn_peer_rpa_only_Gel ... 36
2.5.16. Dble_conn_peer_db _hash_get........cco i 37
2517, Dle_conn_phy Get ... e e 37
2.518. Dle_CONN_PRY SEL.. ..o e 38
2.5.19. Dble_conn_pkKt SIZ& Stccciiiiiiiiiii e 38
2.5.20. ble_conn_chann_mMap_getouiiiiiiiiiii e 39
2.5.21. Dble_conn_ping tO_get ..o 39
2.5.22. Dble_conn_ping t0 Set.......oooi i 39
2.5.23. DI _CONN_ISSI_GEBL....uiiiiiiiiiiit e e 40
2.5.24. Dble_conn_param_UPdate reQ.......ccccooiiiiiiiiii s 40
2.5.25. Dble_conn_per_adv_SYNC AranS........ccccciiiiiiiiii s 41

‘ AN152
GigaDevice GD32VW553 BLE Development Guide
2.5.26. ble_conn_name_get CfM ... 41
2.5.27. Dble_conn_appearance _get CIMoooiiiiiiiiiiii e 42
2.5.28. ble_conn_slave_prefer_param_get Cfmccooiiiiiii 43
2.5.29. ble_conn_name_Set CIM... ..o 43
2.5.30. ble_conn_appearance Set CIM.........ooiiiiiiiiiiiiiii e 44
2.5.31. ble_conn_param_update CIMooiiiiiiiiiiii e 44
2.5.32. ble_conn_local_tX PWI Qeuuiiiiiiii e 45
2.5.33. Dle_CONN_PEEr tX PWI QLuiiiiiiiiii it e e e ee e e e e 45
2.5.34. ble_conn_tX_ pWr_report CHooo i 46
2.5.35. ble_conn_path 0SS Clrl.........eeiiiiiii e 46
2.6. BLE S@CUIItY APl ... e e e e e e 47
2.6.1. SECUNLY MESSAGE TYPE ...ttt rb e e 47
2.6.2. DIE _SEC_ NIt ... 49
2.6.3. ble_sec_callback_regiSter ... 49
2.6.4. DlE _SEC_SECUNLY B0 . i iiiiiiiiiieii ettt e e e 50
2.6.5. DlEe_SEC_DONA_TEQ ..eeiiiiiiiiiie et 50
2.6.6. DlE_SEC_ENCIYPL_MEQ oo 50
26.7. ble_seC_Key_press_NOLTY ... 51
2.6.8. ble_sec_key_display_enter_CfmM..........ooiiiii 51
2.6.9. ble_SEC_00D_req_CfM ... 52
2.6.10. Dle_SEC _NC_CIM ittt 52
2.6.11. ble_SeC K @0 _CfM ..ci i 52
2.6.12. ble_SEC _irK_re0_CM. oo e 53
2.6.13. ble_SeC_CSIK_IeO_CfM ... 53
2.6.14. Dble_sec_encrypt_req_CfM.. ... 54
2.6.15. ble_sec_pairing_req_CfM.......cuuiiiiiiii e 54
2.6.16. ble_sec_00b_data_req_CfMm ... 55
2.6.17. Dble_SeC_00b_data_gencooiiiiiiiiii e 55
2.7, BLE LISt AP ... et 55
2.7.1. LiSt MESSAGE tYPE .. eiiiiiii ittt a e 56
2.7.2. o LT 1153 A T USROS 56
2.7.3. ble_list_callback_regiSter......... ..o 56
274, o] LY = 1o o T PRSP 56
2.7.5. DlE_Fal_lIST ST ..eii i 57
2.7.6. o] LY = Lol [T PRSP 57
2.7.7. Dle_fal_SIZE_ GOL ... i 58
2.7.8. ol [= 1 o) o PP P P PTPPPPPPPPPN 58
2.7.9. DIE_ral LISt Sl .. 58
27100, DIE_Tal_CIBAK ... e e e e 59
2711, DlE_ral_SIZE_get.. . e 59
2.7.12. DI _I0C IPA_GOL ... s 59
2.7.13. Dle _PEEI _IPA_GeL... e s 60
22 0 7 SR o1 = Y o Y- | o] o 60

‘ AN152
GigaDevice GD32VW553 BLE Development Guide
2715, Dle _Pal LISt SEt ... e e aaa e 60
2716, DI _Pal_ClEAT........ et e e e e e eaaaa e s 61
2717, Dl _pal_SIZE GeT... e e e e 61
2.8. BLE Periodic SYNC AP ... e 61
2.8.1. PeriodiC SYNC MESSAGE LYPE ...eeiiiiiiii ittt 61
2.8.2. ol L o =Y =3 o T [L PRI 62
2.8.3. ble_per_sync_callback _regiSter ..o 62
2.8.4. Dle_Per _SYNC STAI ..o e e 62
2.8.5. ol L o= =3 o (o o= 1o (o= PSPPI 63
2.8.6. ble_per_sync_terminateooo i 63
2.8.7. o] Lo o 1= T =3 o o o (o O O PP PP R PPPRPP 64
2.9. BLE Storage APl e 64
2.9.1. Dle_STOrage INit.........eiiiiieeie e 64
29.2. ble_peer_data_bond_StOre ... 65
2.9.3. ble_peer_data_bond_10ad ... 65
294. ble_peer_data_delete ... 65
2.95. ble_peer_all_addr_get ... 66
2.10. BLE Qatts APl ... e 66
2.10.1. gatts MESSAGE LYPE . eii e 66
2.10.2. Dle_gatts iNit.... .o e 68
2.10.3. Dble_gatts SVC_addcocuiiiiiiiiiieiii e 68
2104, Dle_gattS SVC MMV ...eeiiiiiiiiii ettt e e e b e 69
2.10.5. ble_gatts Ntf iNd_SENd........ooiiiiii s 69
2.10.6. ble_gatts ntf_ind_send_by handle...........ccooiiiiiiiiiii 70
2.10.7. Dble_gatts ntf_ind_mMIP_SENA.......cooiiiiiiiii 70
2.10.8. ble_gatts MU _Gelooo i 71
2.10.9. Dble_gatts svC_attr Write CIMooiiiiiii 71
2.10.10. ble_gatts SVC_attr_read_CIM........ocuiiiiiiiii s 71
2.10.11. ble_gatts_get_start hdlc..ooiiiiiii 72
2.11. BLE gatte APl ... e 72
2111, QAC MESSAGE 1Y P .. i ettt e e 72
211.2. Dl _gattC NIt e 73
211.3. Dble_gattc_Start_diSCOVEIYuuiiiiiiiiii e 74
2114, DI _gAtC SVC MO .. uuieiiiiieiiiitie e e e e 74
2115, Dle_gattC rEad ..o 74
211.6. Dle_gattC WIIE MEQ ...eeeiie i 75
2117, Dble_gattc_ Wrte _CMId......cooiiee e 75
2.11.8. ble_gattc_wWrite_SIGNEdc.euiiiiiiiiii e 76
211.9. Dble_gattc_ mMtUu_UPALE ... 76
21110, ble_gattc mMU_get ... 76
2.11.11. ble_gattc_find_char_handle..........ccoooiiiiiiiiii e 76
2.11.12. ble_gattc_find_deSC _handIe..........ccooiiiiiiiiiiie e 77

G AN152

GD32VW553 BLE Development Guide

GigaDevice

2.12. BLE @XPOrt APlo 77
2121, Dle _StACK NIt it a e e e aaaa e s 77
2.12.2. ble_stack _task SUSPENGeuiiiiiiiiiiii e a e 78
2.12.3. ble_stack task reSUMEuuiiiiiiie e e e 78
2.12.4. ble_Stack task NIt ... 78
2.12.5. ble_app task iNit. ... e 78
2.12.6. ble_local_app_MSG SENAuuiiiiiiiiiiii e a e aaaa e 79
2.12.7. ble_app_MSG DAl QG .ooii i e e e e e 79
2.12.8. Dle_SIEEP _MOUE _SEL....ciii i e e aa e 79
2.12.9. ble_Sleep MOAE _GeL ..o e a e 79
2.12.10. ble_COre_iS_dEeP_SIEEPcii it 80
21211, Dble_MOdEM_CONTIG ...oiiiiiiiiie it 80
21212, ble_WOrK_STatUS STueiiiiiiiii e 80
2.12.13. ble_ WOrk_Status_get........ooii i 80
2.12.14. Dble_internal_BNCOAEoiiiiiiiieiiiei e 81
2.12.15. ble_internal_dE@COAEooiiiiiiiiiii e 81
3. Application eXamPlesS...........ooooiiiiiiiii 82
B T T T o 82
3.2, AAVEITISING......oiii e 83
3.3, GATT server applicationcoo i 88
3.3.1. AQAING @ SEIVICE ..coeiiiiiieteeie ettt e e e e e e e s e s r et e e e s e e 88
3.3.2. Service attribute databaseooviiiiiiii 88
3.3.3. Service attribute read and WHEEooiiiiiiiiiie e 90

3.4. BLE distribution networkccccooiiiiiiiiii e, FEARIAR 8 45
3.4.1. ProCess Of BIUE COUIETuuuiiiiie ettt e e e e e e e e s e st e e e e e e s s s nnteeeeaaeeesaanne 92
3.4.2. GATT dESCHIPLON ...ttt e s et e e e e bt e e e et e e e e neeas 93
3.4.3. AAVEItISING Acceiiie e 94
3.4.4. Frame fOrMAto e e e e e arr e e e e e e aanne 94
4. ReVISION NISTONY ... e 98

e AN152

GD32VW553 BLE Development Guide

GigaDevice
List of Figures
Figure 1-1. BLE software framework ... 9
Figure 3-1. Process of BlU@ COUNIEN ... 93

e AN152

GD32VW553 BLE Development Guide

GigaDevice
List of Tables
Table 3-1. Example code of scaneventhandler........................... 82
Table 3-2. Example code of configure scan parameterscccocooeeiiiii e, 83
Table 3-3. Example code of enable scan........................... 83
Table 3-4. Example code of advertising event handlerc.cc 84
Table 3-5. Example code of create advertisSingccoociiiiiiiii 85
Table 3-6. Example code of enable advertising...............c.occcooiiiiiii 87
Table 3-7. Example code of add @ service 88
Table 3-8. Example code of service database 88
Table 3-9. Example code of attribute read and write function.. 90
Table 3-10. Example code of send notification ... 92
Table 3-11. Distribution network service UUID ... 93
Table 3-12. Service UUID in advertising datacccoociiiiii 94
Table 3-13. Frame format of blue COUrer................ooiiiiiii e 94
Table 3-14. Frame control field..................oooiiiiiii e 94
Table 3-15. Content of management frameccoi i 95
Table 3-16. Content of data frame.................ooo oo 96
Table 4-1. ReViSion hiStOry ..o 98

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

1.

1.1.

Overview of BLE SDK

The GD32VW553 series chip is a 32-bit microcontroller (MCU) with RISC-V as the core, which
contains Wi-Fi 4/Wi-Fi 6 and BLES5.2 connection technologies. GD32VW553 Wi-Fi+BLE SDK
integrates the Wi-Fi driver, BLE driver, LwIP TCP/IP protocol stack, MbedTLS, and other
components, allowing developers to quickly develop IoT applications based on GD32VW553.
This document describes the BLE software framework and related API interfaces aiming to
help developers become familiar with BLE APIs and use them to develop their own
applications. For related Wi-Fi information, please refer to the "AN158 GD32VW553 Wi-Fi
Development Guide".

BLE software framework

Figure 1-1. BLE software framework

BLE SERVICES

BLE
COMPONENTS

As shown in Figure 1-1. BLE software framework, the GD32VW553 BLE software part
consists of four modules: BLE STACK, BLE COMPONENTS, BLE services, and BLE APP.

BLE STACK is the implementation of the BLE protocol stack, which includes GAP, GATT, SMP,
L2CAP, HCI, LL, and other modules. BLE STACK runs in a separate task and interacts with
BLE COMPONENTS through TASK messages. APP needs to operate STACK through BLE
COMPONENTS.

BLE COMPONENTS consists of multiple components, and runs in the same task as BLE
service and BLE APP to provide APP with interfaces for STACK control and status notification,
etc. Note that most operations of BLE are executed asynchronously. APP needs to register a
callback handler in each module, and BLE COMPONENTS will notify APP of the API call
execution result or report the operation request initiated by the peer device in the callback
function. Each component is independent of each other. APP can select different components
to initialize them and register the corresponding callback functions as required.

The BLE ADAPTER module mainly provides interfaces for configuring and obtaining local
BLE related attributes. BLE adapter API introduces how to use API of the ADAPTER module.
9

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

The BLE ADV module mainly provides interfaces for creating/deleting advertising sets,
starting/stopping sending advertising packets, etc. BLE advertising API introduces how to

use API of the ADV module, and BLE advertising data API provides some interfaces for

searching for specific AD type data in advertising data.

The BLE SCAN module mainly provides interfaces for searching for advertising sets and
reports the search results to the APP. BLE scan API introduces how to use API of the SCAN
module.

The BLE CONNECTION module mainly provides interfaces for creating connections,
obtaining peer device information, and obtaining or setting connection parameters, etc. BLE
connection API introduces how to use API of the CONNECTION module.

The BLE SECURITY module mainly provides interfaces required for interaction during pairing,
authentication, encryption, and other processes. BLE security API introduces how to use
API of the SECURITY module.

The BLE LIST module mainly provides interfaces for operating FAL, RAL, and PAL, including
operations such as adding devices to the list, deleting devices from the list, and clearing the
list. BLE list API introduces how to use API of the LIST module .

The BLE PERIODIC SYNC module mainly provides interfaces for synchronizing periodic
advertising, reporting received periodic advertising data, etc. BLE periodic_sync API
introduces how to use API of the PERIODIC SYNC module .

The BLE STORAGE module uses flash to store and manage the bond information of the peer
device. The bond information includes peer_irk, peer_ltk, peer csrk, local_irk, local_ltk,
local_csrk, etc. BLE storage API introduces how to use API of the STORAGE module.

The BLE GATT server module mainly provides interfaces for registering/deleting GATT
service, sending notification/indication to GATT client, etc. BLE gatts API introduces how to
use API of the GATT server module.

The BLE GATT client module mainly provides the following functions: initiate GATT discovery,
read and write attribute in the peer GATT server. BLE gattc API introduces API usage of
GATT client module.

BLE services are different services and profiles realized based on GATT server and GATT
client modules, including BAS and DIS, etc. Users can also realize private services by using
GATT server and GATT client interfaces required.

The BLE APP layer is a collection of multiple applications, such as blue courier (Bluetooth
distribution network) and user-defined applications. APP can register callback functions with
different modules to process corresponding messages according to different requirements.

10

©

AN152
GD32VW553 BLE Development Guide

GigaDevice
2. BLE API
2.1. BLE adapter API
The header file is ble_adapter.h.
The BLE adapter module mainly provides interfaces for configuring and obtaining local BLE
related settings.
2.1.1. Adapter message type

APP can register a callback function in the BLE adapter module, and the BLE adapter module
will send the following event message to APP through the callback function.

m BLE_ADP_EVT_ENABLE_CMPL_INFO

This message will be sent after the BLE adapter is initialized. The message data type is
ble_adp_info_t, including whether the initialization is successful; if yes, local attributes such
as local version and local IRK will also be reported.

APP can only perform BLE related operations after it receives this message and the status
indicates that the initialization is successful.
B BLE ADP_EVT_RESET_CMPL_INFO

This message will be sent after the BLE adapter is reset. The message data type is uint16_t,
indicating whether the reset is successful.
m BLE_ADP_EVT_CHANN_MAP_SET_RSP

This message returns the result of APP calling ble_adp_chann_map_set API to set the
channel map. The message data type is uint16_t, indicating whether the channel map is set
successfully.

B BLE ADP_EVT LOC _ IRK_SET RSP

This message returns the result of APP calling ble_adp_loc_irk_set API to set the local IRK.
The message data type is uint16_t, indicating whether the local IRK is set successfully.
B BLE ADP_EVT_LOC_ADDR_INFO

This message is used to notify APP of new address information after the local address
changes, for example, after RPA timeout. The message data type s
ble_gap_local_addr_info_t.

m BLE _ADP_EVT_NAME_SET_RSP

This message returns the result of APP calling ble_adp_name_set API to set the local name.
The message data type is uint16_t, and the status indicates whether the local name is set
successfully.

B BLE_ADP_EVT_ADDR_RESLV_RSP

11

©

AN152
GD32VW553 BLE Development Guide

GigaDevice

This message returns the result of APP calling ble_adp_addr_resolve API to reslove the
passed in RPA. The message data type is ble_gap_addr_resolve_rsp_t, including whether
the RPA is resolved successful; if yes, it also contains the address after the resloving and the
corresponding IRK information.
m BLE ADP_EVT_RAND_ADDR_GEN_RSP
This message returns the result of APP calling ble_adp_none_resolvable_private_addr_gen
API, ble_adp_static random_addr_gen API, or ble_adp_resolvable_private_addr_gen API to
generate a random address. The message data type is ble_gap_rand_addr_gen_rsp_t. If the
random address is successfully generated, the corresponding address information is also
provided.
m BLE ADP_EVT_TEST_TX RSP
This message returns the result of APP calling ble_adp_test_tx APl. The message data type
is uint16_t, indicating whether the tx test starts to be executed successfully.
m BLE ADP_EVT _TEST RX RSP
This message returns the result of APP calling ble_adp_test rx API. The message data type
is uint16_t, indicating whether the rx test starts to be executed successfully.
B BLE _ADP_EVT_TEST_END_RSP
This message returns the result of APP calling ble_adp_test_end API. The message data type
is ble_gap_test _end_rsp_t, including whether the test is ended successfully. In the case of rx
test, it also contains the packet number successfully received.

2.1.2. ble_adp_init
Prototype: ble_status_t ble_adp_init(void)
Function: Initialize the BLE adapter module
Input parameter: None
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status_t on failure

2.1.3. ble_adp_callback_register

Prototype: ble_status_t ble_adp_callback_register(ble_adp_evt _handler_t callback)

Function: Register the callback function that processes BLE adapter messages. For
the description of adapter messages, see_Adapter message type.

Input parameter: callback, callback function pointer

Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure

12

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.1.4.

2.1.5.

2.1.6.

ble_adp_reset

Prototype: ble_status_t ble_adp_reset(void)

Function: Reset BLE protocol stack and each module

Input parameter: None

Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
After the resetting, a BLE_ ADP_EVT_RESET_CMPL_INFO message is sent

to the callback function

ble_adp_cfg

Prototype: ble_status_t ble_adp_cfg(ble_adp_config_t *p_adp_config)

Function: Configure BLE adapter

Input parameter: p_adp_config, adapter config structure pointer, which can be used
to configure the role, privacy, and other attributes of the device
If keys_user_mgr in config is set to true, APP is required to save
and manage keys. APP can call the storage API provided

in BLE storage API to access keys or manage them in the way

it needs. Otherwise, keys are managed by the ble security module.
If the APP does not need to manage relevant information,
it can call ble_peer_data_bond_load to get the saved key information.
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
After the configuration, a BLE_ADP_EVT_ENABLE_CMPL_INFO message

is sent to the callback function

ble_adp_chann_map_set

Prototype: ble_status_t ble_adp_chann_map_set(uint8 t *p_chann_map)
Function: Set the channel map available for BLE

Input parameter: p_chann_map, channel map array, whose length is 5

13

©

AN152
GD32VW553 BLE Development Guide

GigaDevice
bytes and effective bits are the lower 37 bits. Bit 0 of byte 0 is set to use
channel index 0, bit 1 of byte 0 is set to use channel index 1, and so on
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
After the setting, a BLE_ADP_EVT_CHANN_MAP_SET_RSP message is
sent to the callback function
2.1.7. ble_adp_loc_irk_set
Prototype: ble_status_t ble_adp_loc_irk_set(uint8_t *p_irk)
Function: Set local IRK
Input parameter: p_irk, the IRK pointer to be set, whose length is 16 bytes
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
After the setting, a BLE_ADP_EVT _LOC _ IRK _SET RSP message is sent
to the callback function
2.1.8. ble_adp_loc_irk_get
Prototype: ble_status_t ble_adp_loc_irk_get (uint8_t *p_irk)
Function: Get local IRK used by BLE adapter
Input parameter: None
Output parameter: p_irk, local IRK pointer, whose length is 16 bytes, is used to save
the obtained local IRK information
Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
2.1.9. ble_adp_identity_addr_get

Prototype: ble_status_t ble_adp_identity _addr_get (ble_gap_addr_t *p_id_addr)
Function: Get identity address used by BLE adapter

Input parameter: None

Output parameter: p_id_addr, identity address pointer, including address type and

address value

14

©

AN152
GD32VW553 BLE Development Guide

GigaDevice

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
2.1.10. ble_adp_name_set

Prototype: ble_status_t ble_adp_name_set (uint8_t *p_name, uint8_t name_len)

Function: Set device name used by BLE adapter

Input parameter: p_name, device name pointer

name_len, device name length
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
After the setting, a BLE_ADP_EVT_NAME_SET_RSP message is sent to
the callback function

2.1.11. ble_adp_local_ver_get

Prototype: ble_status_t ble_adp_local_ver_get (ble_gap_local_ver_t *p_val)

Function: Get BLE adapter version information

Input parameter: None

Output parameter: p_val, local version structure pointer, including hci version,

Imp version, etc.

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
2.1.12. ble_adp_sugg_dft_data_len_get

Prototype: ble_status_t ble_adp_sugg_dft data_len_get(ble_gap_sugg_dft data_t *p_data)

Function: Get default transmit data parameters of BLE adapter

Input parameter: None

Output parameter: p_data, suggest data structure pointer, including max tx time and

max tx octets

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure

2.1.13. ble_adp_tx_pwr_range_get

Prototype: ble_status_t ble_adp_tx_pwr_range_get(ble_gap_tx_pwr_range_t *p_val)

Function: Get the BLE adapter transmit power range
15

©

AN152
GD32VW553 BLE Development Guide

GigaDevice
Input parameter: None
Output parameter: p_val, tx power range structure pointer, including min tx power and
max tx power

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
2.1.14. ble_adp_max_data_len_get

Prototype: ble_status_t ble_adp_max_data_len_get(ble_gap_max_data len_t *p_len)

Function: Get BLE adapter max data length information

Input parameter: None

Output parameter: p_len, max data length structure pointer, including max tx octets, max

tx time, max rx octets, and max rx time

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
2.1.15. ble_adp_adv_sets_num_get

Prototype: ble_status_t ble_adp_adv_sets_num_get (uint8_t *p_val)

Function: Get the maximum number of advertising sets supported by BLE adapter

Input parameter: None

Output parameter: p_val, advertising set number pointer

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
2.1.16. ble_adp_addr_resolve

Prototype: ble_status_t ble_adp_addr_resolve(uint8_t *p_addr, uint8_t *p_irk, uint8_tirk_num)
Function: Use the keys in the provided IRK list in turn to resolve the input RPA
Input parameter: p_addr, resolvable private address to be resolved
p_irk, IRK list pointer irk_num, the number of keys in the IRK list
Output parameter: None
Return value: Return 0 on successful execution, and return the error code defined
in ble_status_t on failure After execution, a
BLE_ADP_EVT_ADDR_RESLV_RSP message is sent to

the callback function. If the provided address can be resolved,

16

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.1.17.

2.1.18.

2.1.19.

the message data includes the resolved identity address and the used IRK.

ble_adp_static_random_addr_gen

Prototype: ble_status_t ble_adp_static_random_addr_gen(void)

Function: Generate static random address

Input parameter: None

Output parameter: None

Return value: Return 0 on successful execution, and return the error code defined
in ble_status_t on failure After execution, a
BLE_ADP_EVT _RAND_ADDR_GEN_RSP message is sent to the

callback function

ble_adp_resolvable_private_addr_gen

Prototype: ble_status_t ble_adp_resolvable_private_addr_gen(void)

Function: Generate static resolvable private address

Input parameter: None

Output parameter: None

Return value: Return 0 on successful execution, and return the error code defined
in ble_status_t on failure After execution, a
BLE_ADP_EVT_RAND_ADDR_GEN_RSP message is sent to the

callback function

ble_adp_none_resolvable_private_addr_gen

Prototype: ble_status_t ble_adp_none_resolvable_private_addr_gen(void)

Function: Generate static non-resolvable private address

Input parameter: None

Output parameter: None

Return value: Return 0 on successful execution, and return the error code defined
in ble_status_t on failure.After execution, a

BLE_ADP_EVT_RAND_ADDR_GEN_RSP message is sent to the

17

G AN152

GigaDevice GD32VW553 BLE Development Guide

callback function

2.1.20. ble_adp_test_tx

Prototype: ble_status_t ble_adp_test_tx(uint8_t chann, uint8_t tx_data_len,
uint8_t tx_pkt_payload, uint8_t phy, int8_ttx_pwr_Ivl)
Function: Configure BLE controller to enter the test mode and send test packet
Input parameter: chann, tx rf channel index, whose range is 0x00-0x27
tx_data_len, length of tx packet, whose range is 0x00-OxFF
tx_pkt_payload, type of tx packet, whose range is 0x00-0x07
phy, PHY used by tx, 1: 1M, 2: 2M, 3: coded S=8, 4: coded S=2
tx_pwr_lvl: tx power
Output parameter: None
Return value: Return 0 on successful execution, and return the error code defined
in ble_status_t on failure After execution, a BLE_ ADP_EVT _TEST _TX_ RSP

message is sent to the callback function

2.1.21. ble_adp_test_rx

Prototype: ble_status_t ble_adp_test rx(uint8_t chann, uint8_t phy, uint8_t modulation_idx)
Function: Configure BLE controller to enter the test mode and receive test packet
Input parameter: chann, rf channel index used by rx, whose range is 0x00-0x27
phy, PHY used by rx, 1: 1M, 2: 2M, 3: coded

modulation_idx: Whether BLE controller has stable modulation index
Output parameter: None
Return value: Return 0 on successful execution, and return the error code defined

in ble_status_t on failure After execution, a BLE_ ADP_EVT _TEST RX_ RSP

message is sent to the callback function

2.1.22. ble_adp_test_end

Prototype: ble_status_t ble_adp_test end(void)

Function: Configure BLE controller to exit the test mode

18

©

AN152
GD32VW553 BLE Development Guide

GigaDevice
Input parameter: None
Output parameter: None
Return value: Return 0 on successful execution, and return the error code defined
in ble_status_t on failure After execution, a BLE_ADP_EVT_TEST _END_ RSP
message is sent to the callback function

2.2. BLE advertising API
The header file is ble_adv.h.
The BLE advertising module mainly provides interfaces for creating/deleting advertising sets,
starting/stopping sending advertising packets, etc.

2.2.1. Advertising message type
B BLE_ADV_EVT_STATE_CHG
This message is used to notify APP after the state of advertising sets changes. The state of
advertising sets is defined as ble_adv_state_t, including the new state, the reason for state
change, and the changed adv index.
B BLE ADV_EVT DATA UPDATE_RSP
This message is a response to APP calling ble_adv_data_update to update the data of the
advertising set being used. The message data type is ble_adv_data_update_rsp_t, including
the updated advertising data type and the update success or failure state.
B BLE_ADV_EVT_SCAN_REQ_RCV
If scan request notification is enabled upon the creation of advertising set, and a scan request
packet is received after advertising is enabled, APP will receive this message. The message
data type is ble_adv_scan_req_rcv_t, including the set address for sending the scan request.

2.2.2. ble_adv_init

Prototype: ble_status_t ble_adv_init(void)
Function: Initialize the BLE adv module
Input parameter: None

Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure

19

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.2.3.

2.2.4.

2.2.5.

ble_adv_deinit

Prototype: ble_status_t ble_adv_deinit(void)

Function: Release the BLE adv module and used resources
Input parameter: None

Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure

ble_adv_create

Prototype: ble_status_t ble_adv_create(ble_adv_param_t *p_param,
ble_adv_evt_handler_t hdlr, void *p_context)
Function: Create BLE advertising set
Input parameter: p_param, advertising parameter structure pointer, which can be used
to configure adv type, interval, phy, and other parameters
hdlr, a handler that registers messages related to the adv.

For the description of adv messages, see_Advertising message type.

p_context, a parameter that can be additionally returned to
the message handler
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status_t on failure

After the advertising set is successfully created, a BLE_ADV_EVT_STATE_CHG message is
sent to the registered message handler, and the state is BLE_ADV_STATE_CREATE. In
addition, adv index can be obtained from the message and used in subsequent APIs.

ble_adv_start

Prototype: ble_status_t ble_adv_start(uint8_t adv_idx, ble_adv_data_set t *p_adv_data,
ble_adv_data_set t *p_scan_rsp_data, ble_adv_data_set t *p_per_adv_data)
Function: Set advertising set data and start sending advertising packet
Input parameter: adv_idx, advertising index p_adv_data, advertising data structure pointer,
data can be generated by the ble adv module through configuration or

directly set by the caller p_scan_rsp_data, scan response which

20

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.2.6.

2.2.7.

needs to be set when the created advertising set is scannable
advertisingp_per_adv_data, periodic advertising data structure pointer,
which needs to be set when the created advertising set is

periodic advertising

Output parameter: None

Return value: Return 0 on successful execution, and return the error code defined in

ble_status_t on failure. After the function is called,

a BLE_ADV_EVT_STATE_CHG message is sent to the message handler
registered when advertising is created. According to the advertising

data need to set, there may be messages whose state is
BLE_ADV_STATE_ADV_DATA_SET,
BLE_ADV_STATE_SCAN_RSP_DATA_SET,

or BLE_ADV_STATE_PER_ADV_DATA_ SET.

Finally, there is a message whose state is BLE_ ADV_STATE_START

ble_adv_restart

Prototype: ble_status_t ble_adv_restart(uint8_t adv_idx)

Function: Resend advertising packet after the advertising set is stopped
Input parameter: adv_idx, advertising index

Output parameter: None

Return value: Return 0 on successful execution, and return the error code defined

in ble_status_t on failure. After the advertising is restarted successfully,
a BLE_ADV_EVT_STATE_CHG message is sent to the message handler
registered when ble_adv_create API is called, and the

state is BLE_ADV_STATE_START

ble_adv_stop

Prototype: ble_status_t ble_adv_stop(uint8_t adv_idx)
Function: Stop sending advertising packets

Input parameter: adv_idx, advertising index

21

G AN152

GD32VW553 BLE Development Guide

GigaDevice
Output parameter: None
Return value: Return 0 on successful execution, and return the error code defined
in ble_status_t on failure. After the advertising set stops to be sent,
a BLE_ADV_EVT_STATE_CHG message is sent to the message handler
registered when ble_adv_create API is called, and the
state is BLE_ADV_STATE_CREATE
2.2.8. ble_adv_remove
Prototype: ble_status_t ble_adv_remove(uint8_t adv_idx)
Function: Delete the advertising set that no longer sends advertising packets.
If the advertising set is sending advertising packets, that is,
the state is BLE_ ADV_STATE_START, first call ble_adv_stop to stop it,
and then call this function to remove it.
Input parameter: adv_idx, advertising index
Output parameter: None
Return value: Return 0 on successful execution, and return the error code defined
in ble_status_t on failure.
2.2.9. ble_adv_data_update

Prototype: ble_status_t ble_adv_data_update(uint8_t adv_idx, ble_adv_data_set t
*p_adv_data, ble_adv_data_set t *p_scan_rsp_data, ble_adv_data_set t *p_per_adv_data)

Function: Update the adv data, scan response data, and periodic adv data of
the advertising set which is sending advertising packets and
whose state is BLE_ ADV_STATE_START
Input parameters: adv_idx, advertising index p_adv_data,
advertising data structure pointer p_scan_rsp_data,
scan response data structure pointer p_per_adv_data,
periodic advertising data structure pointer
Output parameter: None

Return value: Return 0 on successful execution, and return the error code defined

22

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.3.

2.3.1.

2.3.2.

in ble_status_t on failure.
After execution, a BLE_ADV_EVT_DATA UPDATE_RSP

message is sent to the callback function

BLE advertising data API

The header file is ble_adv_data.h.

The BLE advertising data module mainly provides interfaces for searching for the specified
ad type in advertising data.

ble_adv_find

Prototype: uint8_t *ble_adv_find(uint8_t *p_data, uint16_t data_len, uint8_t ad_type,
uint8_t *p_len)

Function: Search for data of the specified ad type in advertising data
Input parameter: p_data, the address of advertising data for searching

data_len, the length of advertising data for searching

ad_type, the ad type to be searched
Output parameter: p_len, the length of the searched data value of the corresponding type
Return value: The address of the searched data value of the corresponding type.

If not found, return NULL

ble_adv_cmpl_name_find

Prototype: bool ble_adv_cmpl_name_find(uint8_t *p_data, uint16_t data_len,
uint8_t *p_name, uint16_t name_len)

Function: Search for the specified complete name in advertising data
Input parameter: p_data, the address of advertising data for searching

data_len, the length of advertising data for searching

p_name, the address of the complete name to be searched

name_len, the length of the complete name to be searched
Output parameter: None

Return value: Return true if the specified complete name can be found in

23

G AN152

GigaDevice GD32VW553 BLE Development Guide

advertising data; otherwise, return false

2.3.3. ble_adv_short_name_find

Prototype: bool ble_adv_short_name_find (uint8_t *p_data, uint16_t data_len,
uint8_t *p_name, uint16_t name_len_min)

Function: Search for the specified short name in advertising data
Input parameter: p_data, the address of advertising data for searching

data_len, the length of advertising data for searching

p_name, the address of the short name to be searched

name_len_min, the minimum length that the short name needs to match
Output parameter: None
Return value: Return true if the specified short name can be found

in advertising data; otherwise, return false

2.3.4. ble_adv_srv_uuid_find

Prototype: bool ble_adv_srv_uuid_find(uint8_t *p_data, uint16_t data_len, ble_uuid_t *p_uuid)
Function: Search for the specified service uuid in advertising data
Input parameter: p_data, the address of advertising data for searching

data_len, the length of advertising data for searching

p_uuid, the uuid structure pointer to be searched, including uuid

length and uuid content

Output parameter: None
Return value: Return true if the specified service uuid can be found

in advertising data; otherwise, return false

2.3.5. ble_adv_appearance_find

Prototype: bool ble_adv_appearance_find(uint8_t *p_data, uint16_t data_len,
uint16_t appearance)
Function: Search for the specified appearance in advertising data

Input parameter: p_data, the address of advertising data for searching

24

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.4.

2.4.1.

2.4.2.

2.4.3.

data_len, the length of advertising data for searching
appearance, the appearance value to be searched
Output parameter: None
Return value: Return true if the specified appearance can be found

in advertising data; otherwise, return false

BLE scan API

The header file is ble_scan.h.

The BLE scan module mainly provides interfaces for searching for advertising data and
reports the search results.

Scan message type

APP can register a callback function in the BLE scan module, and the BLE scan module will
send the following event message to APP through the callback function.

m BLE_SCAN_EVT_STATE_CHG

This message is sent to the callback function when the scan state changes. The message
data type is ble_scan_state_chg_t, including the current scan state and the reason for change.

m BLE_SCAN_EVT ADV_RPT

This message is used to notify APP of the data received after the advertising packet is
scanned. The message data type is ble_gap_adv_report_info_t. The structure contains the
received advertising packet type, advertiser address, advertising sid, data, etc.

ble_scan_init

Prototype: ble_status_t ble_scan_init(ble_gap_local_addr_type t own_addr type)
Function: Initialize the BLE scan module

Input parameter: own_addr_type, the local address type used in the scan process
Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure

ble_scan_reinit

Prototype: ble_status_t ble_scan_reinit(ble_gap_local_addr_type t own_addr_type)

Function: Reinitialize the BLE scan module
25

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.4.4.

2.4.5.

2.4.6.

Input parameter: own_addr_type, the local address type used in the scan process
Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure

ble_scan_callback_register

Prototype: ble_status_t ble_scan_callback_register(ble_scan_evt_handler_t callback)
Function: Register the callback function for processing BLE scan messages
Input parameter: callback, a function that processes BLE scan messages.

For the description of scan messages, see Scan message type.

Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure

ble_scan_enable

Prototype: ble_status_t ble_scan_enable(void)
Function: Enable BLE scan, and a BLE_SCAN_EVT_ADV_RPT message is sent to
the callback function to notify it of the scanned device.

Input parameter: None

Output parameter: None

Return value: Return 0 on successful execution, and return the error code defined in
ble_status_t on failure. After the enabling,
a BLE_SCAN_EVT_STATE_CHG message is sent to

the callback function, and the state is BLE_SCAN_STATE_ENABLED

ble_scan_disable

Prototype: ble_status_t ble_scan_disable(void)

Function: Disable BLE scan

Input parameter: None

Output parameter: None

Return value: Return 0 on successful execution, and return the error code defined

in ble_status_t on failure. After the disabling,

26

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.4.7.

2.5.

2.5.1.

a BLE_SCAN_EVT_STATE_CHG message is sent to

the callback function, and the state is BLE_ SCAN_STATE_DISABLED

ble_scan_param_set

Prototype: ble_status_t ble_scan_param_set (ble_gap_scan_param_t *p_param)

Function: Set BLE scan parameters

Input parameter: p_param, scan parameter structure pointer, including scan type,
interval, window, etc.

Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure

BLE connection API

The header file is ble_conn.h.

The BLE connection module mainly provides interfaces for creating connections, obtaining
peer device information, and obtaining or setting connection parameters.

Connection message type

APP can register a callback function in the BLE connection module, and the BLE connection
module will send the following event messages to APP through the callback function.

m BLE_CONN_EVT_INIT_STATE_CHG

This message is sent to the callback function when the state changes during active creation
of connections. The data type is ble_init_state_chg_t, including the current state, the reason
for state change, and whether the filter accept list is used.

B BLE _CONN_EVT_STATE_CHG

This message is sent to the callback function after the connection state changes. The data
type is ble_conn_state_chg_t, which contains the new state. When the state is
BLE_CONN_STATE_CONNECTED, it also contains information of connections whose
structure is ble_gap_conn_info_t. When the state is BLE_ CONN_STATE_DISCONNECTD, it
also contains the information of disconnections whose structure is ble_gap_disconn_info_t.
B BLE_CONN_EVT_DISCONN_FAIL

This message is sent to the callback function when the active disconnection fails. The data
type is ble_conn_disconn_fail_t, including the reason for disconnection failure, etc.
B BLE_CONN_EVT_PEER_NAME_GET_RSP

This message returns the result of APP calling ble_conn_peer_name_get to get the name
27

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

information in the peer GATT database. The message data type s
ble_gap_peer_name_get rsp_t, including the status of the obtained attribute. If the status is
BLE_ERR_NO_ERROR, it also contains the attribute handle, name length, name content,
etc.

B BLE CONN_EVT_PEER_VERSION_GET_RSP

This message returns the result of APP calling ble_conn_peer_version_get to get the peer
version information. The message data type is ble_gap_peer_ver get rsp_t, including the
status of the obtained version. If the status is BLE_ ERR_NO_ERROR, it also contains the
company id, Imp version, Imp subversion, etc.

B BLE _CONN_EVT_PEER_FEATS _GET_RSP

This message returns the result of APP calling ble _conn_peer feats get to get the
information of features supported by the peer device. The message data type is
ble gap_peer feats_get rsp_t, including the obtained status. If the status is
BLE_ERR _NO_ERROR, it also contains the feature array supported by the peer, etc.

Bm BLE CONN_EVT _PEER_APPEARANCE_GET RSP

This message returns the result of APP calling ble_conn_peer_appearance_get to get the
appearance information in the peer GATT database. The message data type is
ble _gap_peer_appearance_get_rsp_t, including the status of the obtained attribute. If the
status is BLE_ ERR_NO_ERROR, it also contains the attribute handle, appearance, etc.

B BLE _CONN_EVT_PEER_SLV_PRF_PARAM_GET_RSP

This message returns the result of APP calling ble_conn_peer_slave_prefer_param_get to
get the information of the attribute slave preferred parameter in the peer GATT database. The
message data type is ble_gap_slave prefer param_get rsp_t, including the status of the
obtained attribute. If the status is BLE_ERR_NO_ERROR, it also contains the attribute handle,
slave preferred connection interval, latency, etc.

B BLE CONN_EVT PEER_ADDR _RESLV_GET RSP

This message returns the result of APP calling ble_conn_peer_addr_resolution_support_get
to get the information of the attribute central address resolution support in the peer GATT
database. The message data type is ble_gap_peer _addr resol_get rsp_t, including the
status of the obtained attribute. If the status is BLE_ ERR_NO_ERROR, it also contains the
attribute handle, central address resolution support, etc.
Bm BLE _CONN_EVT_PEER_RPA_ONLY_GET_RSP

This message returns the result of APP calling ble_conn_peer_rpa_only get to get the
information of the attribute resolvable private address only in the peer GATT database. The
message data type is ble_gap_peer_rpa_only get rsp_t, including the status of the obtained
attribute. If the status is BLE_ERR NO_ ERROR, it also contains the attribute handle,
resolvable private address only, etc.

m BLE CONN_EVT _PEER DB HASH GET RSP

This message returns the result of APP calling ble_conn_peer_db_hash_get to get the
information of the attribute database hash in the peer GATT database. The message data

28

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

type is ble_gap_peer _db_hash_get rsp_t, including the obtained status. If the status is
BLE_ERR_NO_ERROR, it also contains the attribute handle, database hash etc.
B BLE CONN_EVT_PING _TO VAL _GET RSP

This message returns the result of APP calling ble_conn_ping_to_get to get the BLE link ping
timeout value. The message data type is ble_gap_ping_tout_get rsp_t, including the obtained
status. If the status is BLE_ ERR_NO_ERROR, it also contains the ping timeout value.

B BLE_CONN_EVT_PING_TO_INFO

This message is used to actively notify APP after ping timeout. The message data type is
ble_gap_ping_tout_info_t, including the connection index where the ping timeout occurs.
B BLE CONN_EVT PING_TO_SET RSP

This message returns the result of APP calling ble_conn_ping_to_set to set the ping timeout
value. The message data type is ble_gap_ping_tout_set rsp_t, including the set status, etc.
Bm BLE _CONN_EVT_RSSI_GET_RSP

This message returns the result of APP calling ble_conn_rssi_get to get the RSSI of the last
packet successfully received through the corresponding connection. The message data type
is ble_gap_peer _feats_get rsp_t, including the obtained status. If the status is
BLE_ERR_NO_ERROR, it also contains the RSSI, etc.

B BLE CONN_EVT_CHANN_MAP_GET RSP

This message returns the result of APP calling ble_conn_chann_map_get to get the channel
map used by the corresponding connection. The message data type is
ble_gap_chann_map_get rsp_t, including the obtained status. If the status s
BLE_ERR_NO_ERROR, it also contains the channel map array information.

m BLE _CONN_EVT_NAME_GET_IND

This message is used to notify APP when the peer device tries to get the local name. The
message data type is ble_gap_name_get _ind_t, including the start offset and the maximum
name length of the name to return. APP can call ble_conn_name_get_cfm to reply.

B BLE CONN_EVT _APPEARANCE_GET IND

This message is used to notify APP when the peer device tries to get the local appearance.
The message data type is ble gap_appearance_get ind_t. APP can call
ble_conn_appearance_get_cfm to reply.

B BLE _CONN_EVT_SLAVE PREFER_PARAM_GET_IND

This message is used to notify APP when the peer device tries to get the local slave preferred
parameter attribute. The message data type is ble_gap_slave_prefer_param_get_ind_t. APP
can call ble_conn_slave_prefer_param_get _cfm to reply.

B BLE _CONN_EVT_NAME_SET_IND

This message is used to notify APP when the peer device tries to set the local name. The
message data type is ble_gap_name_set_ind_t, including the name length and name content
to be set. APP can call ble_conn_name_set_cfm to reply.

B BLE_CONN_EVT_APPEARANCE_SET_IND

29

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

This message is used to notify APP when the peer device tries to set the local appearance.
The message data type is ble_gap_appearance_set_ind_t, including the appearance value
to be set. APP can call ble_conn_appearance_set_cfm to reply.

B BLE CONN_EVT_PARAM_UPDATE_IND

This message is used to notify APP when the peer initiates the connection parameter update.
The message data type is ble_gap_conn_param_update_ind_t, including parameters such
as connection interval, latency, and supervision timeout that the peer wants to update. APP
can call ble_conn_param_update_cfm to reply.

B BLE_CONN_EVT_PARAM_UPDATE_RSP

This message returns the result of APP calling ble_conn_param_update_req to initiate the
connection parameter update. The message type is ble_gap_conn_param_update rsp _t,
including the update status.

B BLE CONN_EVT_PARAM_UPDATE_INFO

This message is used to notify APP after the connection parameter update initiated by the
peer or local device is completed. The message data type is ble_gap_conn_param_info _t,
including the connection interval, latency, supervision timeout, etc. used after the update.

Bm BLE _CONN_EVT_PKT_SIZE_SET_RSP

This message returns the result of APP calling ble_conn_pkt size set to set the size of
packets sent by the local device. The message data type is ble_gap_pkt_size set rsp _t,
including the set status.

B BLE CONN_EVT PKT_SIZE_INFO

This message is used to notify APP after the packet size update initiated by the peer or local
device is completed. The message data type is ble_gap_pkt_size info_t, including the max
tx octets, max tx time, max rx octets, and max rx time.

B BLE _CONN_EVT_PHY_GET_RSP

This message returns the result of APP calling ble_conn_phy_get to get the PHY information
used by the connection. The message data type is ble_gap_phy get rsp_t, including the
obtained status.

M BLE CONN_EVT PHY_SET RSP

This message returns the result of APP calling ble_conn_phy_set to set the PHY used by the
connection. The message data type is ble_gap_phy_set rsp_t, including the set status.
B BLE _CONN_EVT_PHY_INFO

This message is used to notify APP of the currently used PHY information after APP gets the
connection PHY information and APP or the peer completes the setting of connection PHY.
The message data type is ble_gap_phy_info_t, including the tx PHY and rx PHY information
of the current connection.

B BLE _CONN_EVT_LOC_TX_PWR_GET_RSP

This message returns the result of APP calling ble_conn_local_tx_pwr_get to get the local
transmit power. The message data type is ble_gap_local_tx_pwr_get rsp_t, including the

30

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.5.2.

obtained status. If the status is BLE_ERR _NO_ERROR, it also contains the obtained PHY,
the currently used transmit power on the corresponding PHY, and the maximum transmit
power.

B BLE CONN_EVT _PEER_TX PWR_GET_RSP

This message returns the result of APP calling ble_conn_peer_tx_pwr_get to get the peer
transmit power. The message data type is ble_gap_peer_tx_pwr_get rsp_t, including the
obtained status. If the status is BLE_ ERR_NO_ERROR, it also contains the obtained PHY,
the transmit power on the corresponding PHY used by the peer, and power flags.

B BLE _CONN_EVT_TX PWR_RPT_CTRL_RSP

This message returns the result of APP calling ble_conn_tx_pwr_report_ctrl to set the transmit
power report. The message data type is ble_gap_tx_pwr_report_ctrl_rsp_t, including the set
status.

B BLE CONN_EVT LOC TX PWR _RPT_INFO

This message is used to notify APP after APP calls ble_conn_tx_pwr_report_ctrl to enable
the report when the local transmit power changes. The message data type is
ble_gap tx_pwr_report_info_t, including the PHY reported by the local device, the transmit
power on the corresponding PHY, power flags, and changed transmit power delta.

B BLE _CONN_EVT_PEER_TX PWR_RPT_INFO

This message is used to notify APP after APP calls ble_conn_tx_pwr_report_ctrl to enable
the report when the peer transmit power changes. The message data type is
ble_gap_tx_pwr_report_info_t, including the PHY reported by the peer device, the transmit
power on the corresponding PHY, power flags, and changed transmit power delta.

B BLE CONN_EVT PATH LOSS CTRL_RSP

This message returns the result of APP calling ble_conn_path_loss_ctrl to set the path loss.
The message data type is ble_gap_path_loss_ctrl_rsp_t, including the set status.
B BLE _CONN_EVT_PATH_LOSS THRESHOLD_INFO

This message is used to notify APP after APP calls ble_conn_path_loss_ctrl to set the path
loss and the path loss 2zone <changes. The message data type s
ble_gap_path_loss_threshold_info_t, including the current path loss value and the
corresponding zone information.

B BLE CONN_EVT _PER_SYNC_TRANS RSP

This message returns the result of APP calling ble_conn_per_adv_sync_trans to sync transfer
periodic advertising to the peer device. The message type is
ble_gap_per_adv_sync_trans_rsp_t, including the transfer success or failure status.

ble_conn_init

Prototype: ble_status_t ble_conn_init(void)

Function: Initialize the BLE connection module

31

©

AN152
GD32VW553 BLE Development Guide

GigaDevice

Input parameter: None

Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
2.5.3. ble_conn_callback_register

Prototype: ble_status_t ble_conn_callback_register(ble_conn_evt_handler_t callback)

Function: Register the callback function for processing BLE connection messages

Input parameter: callback, a function that processes BLE connection messages. For

the description of connection messages, see Connection message type.

Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
2.5.4. ble_conn_callback_unregister

Prototype: ble_status_t ble_conn_callback_unregister(ble_conn_evt_handler_t callback)

Function: Unregister the callback function from the BLE connection module

Input parameter: callback, a function that processes BLE connection messages

Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
2.5.5. ble_conn_connect

Prototype: ble_status_t ble_conn_connect(ble_gap_init_param_t
*p_param, ble_gap_local_addr_type t own_addr_type,
ble_gap_addr_t *p_peer_addr_info, bool use_wl)
Function: Initiate BLE connection
Input parameters: p_param, the parameter structure pointer used when initiating connections,
including the connection interval, window, etc. own_addr_type,
the local address type used when creating connections p_peer_addr_info,
the peer device address information pointer use_wil, indicating
whether FAL is used; if yes, it will connect to the device in FAL

instead of the address specified by p_peer_addr_info.

32

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.5.6.

2.5.7.

2.5.8.

Output parameter: None

Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After successful connection,
a BLE_CONN_EVT_STATE_CHG message is sent to the callback function,
and the state is BLE_ CONN_STATE_CONNECTED. The connection index

included in the connection info can be used for subsequent operations.

ble_conn_disconnect

Prototype: ble_status_t ble_conn_disconnect(uint8_t conidx, uint16_t reason)
Function: Disconnect BLE connection
Input parameter: conidx, BLE connection index, which can be obtained in the connection
success message reason, the reason for disconnection;
use BLE_ERROR_HL_TO_HCI(BLE_LL_ERR_xxx),
and BLE_LL _ERR_xxx is the error code of the LL group in ble_err_t
Output parameter: None
Return value: Return 0 on successful execution, and return the error code defined in
ble_status_t on failure. After successful disconnection,
a BLE_CONN_EVT_STATE_CHG message is sent to the callback function,

and the state is BLE_CONN_STATE_DISCONNECTED

ble_conn_connect_cancel

Prototype: ble_status_t ble_conn_connect_cancel(void)

Function: Cancel the BLE connection being initiated

Input parameter: None

Output parameter: None

Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure.

ble_conn_sec_info_set
Prototype: ble_status_t ble_conn_sec_info_set(uint8_t conidx, uint8_t *p_local_csrk,

33

©

AN152
GD32VW553 BLE Development Guide

GigaDevice
uint8_t *p_peer_csrk, uint8_t pairing_Ivl,
uint8_t enc_key present)
Function: If APP manages security keys, after receiving the
BLE_CONN_EVT_STATE_CHG message showing the connection state is
BLE_CONN_STATE_CONNECTED, it should call this API to transfer key
information to BLE stack.
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
p_local_csrk, local CSRK
p_peer_csrk, peer CSRK
pairing_Ivl, pairing level
enc_key_present, which indicates whether encryption key is present
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure.
2.5.9. ble_conn_peer_name_get
Prototype: ble_status_t ble_conn_peer_name_get(uint8_t conidx)
Function: Get the name of the peer device that has established a connection in
the GATT database
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,
a BLE_CONN_EVT_PEER_NAME_GET_RSP
message is sent to the callback function
2.5.10. ble_conn_peer_feats_get

Prototype: ble_status_t ble_conn_peer_feats_get(uint8_t conidx)

34

©

AN152
GD32VW553 BLE Development Guide

GigaDevice
Function: Get the features supported by the peer device that has established a connection
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
Output parameter: None
Return value: Return 0 on successful execution, and return the error code defined in
ble_status_t on failure. After execution,
a BLE_CONN_EVT_PEER_FEATS_GET_RSP
message is sent to the callback function
2.5.11. ble_conn_peer_appearance_get
Prototype: ble_status_t ble_conn_peer_appearance_get(uint8_t conidx)
Function: Get the appearance of the peer device that has established a connection in
the GATT database
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,
a BLE_CONN_EVT PEER_APPEARANCE_GET_RSP
message is sent to the callback function
2.5.12. ble_conn_peer_version_get

Prototype: ble_status_t ble_conn_peer_version_get(uint8_t conidx)
Function: Get the version information of the peer device that has established a connection
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,

a BLE_CONN_EVT_PEER_VERSION_GET_RSP
35

©

AN152
GD32VW553 BLE Development Guide

GigaDevice
message is sent to the callback function
2.5.13. ble_conn_peer_slave_prefer_param_get
Prototype: ble_status_t ble_conn_peer_slave_prefer_param_get(uint8_t conidx)
Function: Get the slave prefer parameters attribute of the peer device that has
established a connection in the GATT database
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,
a BLE_CONN_EVT_PEER_SLV_PRF_PARAM_GET_RSP
message is sent to the callback function
2.5.14. ble_conn_peer_addr_resolution_support_get
Prototype: ble_status_t ble_conn_peer_addr_resolution_support_get(uint8_t conidx)
Function: Get the address resolution support attribute of the peer device that has
established a connection in the GATT database
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,
a BLE_CONN_EVT_PEER_ADDR_RESLV_GET_RSP
message is sent to the callback function
2.5.15. ble_conn_peer_rpa_only_get

Prototype: ble_status_t ble_conn_peer_rpa_only_get(uint8_t conidx)
Function: Get the RPA only attribute of the peer device that has established a connection

in the GATT database

36

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.5.16.

2.5.17.

Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,
a BLE_CONN_EVT_PEER_RPA_ONLY_GET_RSP

message is sent to the callback function

ble_conn_peer_db_hash_get

Prototype: ble_status_t ble_conn_peer_db_hash_get(uint8_t conidx)
Function: Get the database hash attribute of the peer device that has
established a connection in the GATT database
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,
a BLE_CONN_EVT_PEER_DB_HASH_GET_RSP

message is sent to the callback function

ble_conn_phy_get

Prototype: ble_status_t ble_conn_phy_get(uint8_t conidx)

Function: Get the PHY being used by the established connection

Input parameter: conidx, BLE connection index, which can be obtained in

the connection success message

Output parameter: None

Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,
a BLE_CONN_EVT_PHY_GET_RSP

message is sent to the callback function. If the PHY is successfully obtained,

37

G AN152
GD32VW553 BLE Development Guide

GigaDevice

a BLE_CONN_EVT_PHY_INFO message is also sent to the callback function

2.5.18. ble_conn_phy_set

Prototype: ble_status_t ble_conn_phy_set(uint8_t conidx, uint8_t tx_phy, uint8_t rx_phy,
uint8_t phy_opt)
Function: Set the PHY used by the established connection
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
tx_phy, the PHY bitfield used by tx, which is composed of ble_gap_le_phy bf t
rx_phy, the PHY bitfield used by rx, which is composed of ble_gap_le_phy_bf t
phy_opt, in the case of coded PHY, set the preference of S=2 or S=8
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,
a BLE_CONN_EVT_PHY_SET RSP
message is sent to the callback function. After the PHY is successfully set,

a BLE_CONN_EVT_PHY_INFO message is also sent to the callback function

2.5.19. ble_conn_pkt_size_set

Prototype: ble_status_t ble_conn_pkt_size_set(uint8_t conidx, uint16_t tx_octets,
uint16_t tx_time)
Function: Set the maximum packet size that an established connection can use
when transmitting
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message

tx_octets, the maximum number of octets in the tx packet

tx_time, the maximum time for sending tx packets
Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure. After execution,

38

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.5.20.

2.5.21.

2.5.22.

a BLE_CONN_EVT_PKT_SIZE_SET_RSP
message is sent to the callback function. After packet size is successfully set,

a BLE_CONN_EVT_PKT_SIZE_INFO message is sent to the callback function.

ble_conn_chann_map_get

Prototype: ble_status_t ble_conn_chann_map_get(uint8_t conidx)
Function: Get the channel map used by the established connection
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,
a BLE_CONN_EVT_CHANN_MAP_GET_RSP

message is sent to the callback function

ble_conn_ping_to_get

Prototype: ble_status_t ble_conn_ping_to_get(uint8_t conidx)

Function: Get the ping timeout value of the established connection

Input parameter: conidx, BLE connection index, which can be obtained in

the connection success message

Output parameter: None

Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,
a BLE_CONN_EVT_PING_TO_VAL_GET_RSP

message is sent to the callback function

ble_conn_ping_to_set

Prototype: ble_status_t ble_conn_ping_to_set(uint8_t conidx, uint16_t tout)
Function: Set the ping timeout value of the established connection

Input parameter: conidx, BLE connection index, which can be obtained in

39

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.5.23.

2.5.24.

the connection success message
tout, ping timeout value, in 10 ms
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,
a BLE_CONN_EVT_PING_TO_SET_RSP

message is sent to the callback function

ble_conn_rssi_get

Prototype: ble_status_t ble_conn_rssi_get(uint8_t conidx)
Function: Get the rssi of the packet recently received on the established connection
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message

Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure. After execution,

a BLE_CONN_EVT_RSS|_GET_RSP

message is sent to the callback function.

ble_conn_param_update_req

Prototype: ble_status_t ble_conn_param_update_req (uint8_t conidx, uint16_t interval,
uint16_t latency, uint16_t supv_to, uint16_t ce_len)

Function: Set connection parameters of the established connection
Input parameter: conidx, BLE connection index, which can be obtained in

the connection success message

interval, the connection event period to be set, in 1.25 ms

latency, the maximum number of connection events for the master packet

that the slave does not need to listen to
supv_to, disconnection timeout, in 10 ms

ce_len, the length of connection events, in 0.625 ms

40

G AN152
GD32VW553 BLE Development Guide

GigaDevice

Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,
a BLE_CONN_EVT_PARAM_UPDATE_RSP message is sent to
the callback function. After the connection parameters are successfully updated,
a BLE_CONN_EVT_PARAM_UPDATE_INFO

message is also sent to the callback function

2.5.25. ble_conn_per_adv_sync_trans

Prototype: ble_status_t ble_conn_per_adv_sync_trans(uint8_t conidx, uint8_t trans_idx,
uint16_t srv_data)
Function: Forward periodic advertising information to the peer device that has
established a connection, so that it can directly initiate sync
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message trans_idx, the index to be forwarded,
which can be the index of periodic advertising created by the local device
or the sync index after the local sync is successful srv_data,
the service data that APP can set
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,
a BLE_CONN_EVT_PER_SYNC_TRANS_RSP

message is sent to the callback function

2.5.26. ble_conn_name_get_cfm

Prototype: ble_status_t ble_conn_name_get_cfm(uint8_t conidx, uint16_t status,
uint16_t token, uint16_t cmpl_len, uint8_t *p_name, uint16_t name_len)
Function: This function is used to reply the request initiated by the peer device to get
the local name after receiving the BLE_ CONN_EVT_NAME_GET_IND

message in the callback function

41

G AN152
GD32VW553 BLE Development Guide

GigaDevice

Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
status, the confirm status; if there is an error or exception,
fill in the error code; otherwise, fill in 0
token, message token, which is obtained in the
BLE_CONN_EVT_NAME_GET_IND message

cmpl_len, the total length of the local name

p_name, a pointer to the complete or partial content of the replied name

name_len, the length of the name in this reply. If the complete

name is replied, the length is equal to cmpl_len

Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure

2.5.27. ble_conn_appearance_get_cfm

Prototype: ble_status_t ble_conn_appearance_get_cfm(uint8_t conidx, uint16_t status,
uint16_t token, uint16_t appearance)
Function: This function is used to reply the request initiated by the peer device to get
the local appearance after receiving the
BLE_CONN_EVT_APPEARANCE_GET_IND
message in the callback function
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
status, the confirm status; if there is an error or exception,
fill in the error code; otherwise, fill in 0
token, which is obtained in the
BLE_CONN_EVT_APPEARANCE_GET_IND message
appearance, the local appearance replied
Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure

42

©

AN152
GD32VW553 BLE Development Guide

GigaDevice
2.5.28. ble_conn_slave_prefer_param_get_cfm
Prototype: ble_status_t ble_conn_slave prefer_param_get_cfm (uint8_t conidx,
uint16_t status, uint16_t token, ble_gap_prefer_periph_param_t *p_param)
Function: This function is used to reply the request initiated by the peer device to get
the slave prefer parameter after receiving
the BLE_CONN_EVT_SLAVE_PREFER_PARAM_GET_IND
message in the callback function
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
status, the confirm status; if there is an error or exception,
fill in the error code; otherwise, fill in 0
token, which is obtained in the
BLE_CONN_EVT_SLAVE_PREFER_PARAM_GET_IND message
p_param, slave prefer parameter structure pointer, including the
interval, latency, etc.
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
2.5.29. ble_conn_name_set_cfm

Prototype: ble_status_t ble_conn_name_set_cfm (uint8_t conidx, uint16_t status,
uint16_t token)
Function: This function is used to reply the request initiated by the peer device to set
the local name after receiving the BLE_CONN_EVT_NAME_SET_IND
message in the callback function
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
status, the confirm status; if there is an error or exception,
fill in the error code; otherwise, fill in 0
token, which is obtained in

43

G AN152

GigaDevice GD32VW553 BLE Development Guide
the BLE_CONN_EVT_NAME_SET_IND message

Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure

2.5.30. ble_conn_appearance_set_cfm

Prototype: ble_status_t ble_conn_appearance_set_cfm(uint8_t conidx, uint16_t status,
uint16_t token)
Function: This function is used to reply the request initiated by the peer device to set the local
appearance after receiving the
BLE_CONN_EVT_APPEARANCE_SET_IND message in the callback function
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
status, the confirm status; if there is an error or exception,
fill in the error code; otherwise, fill in 0
token, which is obtained in
the BLE_CONN_EVT_APPEARANCE_SET_IND message
Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure

2.5.31. ble_conn_param_update_cfm

Prototype: ble_status_t ble_conn_param_update_cfm(uint8_t conidx, bool accept,
uint16_t ce_len_min, uint16_t ce_len_max)
Function: This function is used to reply the connection parameter update request
initiated by the peer device after receiving
the BLE_CONN_EVT_PARAM_UPDATE_IND message in the callback function
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message accept, true means to accept
the connection parameter update request; otherwise, return false
ce_len_min, the minimum time of connection events, in 0.625 ms

ce_len_max, the maximum time of connection events, in 0.625 ms

44

G AN152

GigaDevice GD32VW553 BLE Development Guide

Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure

2.5.32. ble_conn_local_tx_pwr_get

Prototype: ble_status_t ble_conn_local_tx_pwr_get(uint8_t conidx,
ble_gap _phy pwr_value t phy)
Function: Get the local transmit power on the corresponding PHY of
the established connection
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
phy, the PHY corresponding to the obtained power

Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure. After execution,

a BLE_CONN_EVT_LOC_TX_PWR_GET_RSP

message is sent to the callback function

2.5.33. ble_conn_peer_tx_pwr_get

Prototype: ble_status_t ble_conn_peer_tx_pwr_get (uint8_t conidx,
ble_gap_phy_pwr_value_t phy)
Function: Get the peer transmit power used on the corresponding PHY of
the established connection
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
phy, the PHY corresponding to the obtained power

Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure. After execution,

a BLE_CONN_EVT_PEER_TX_PWR_GET_RSP

message is sent to the callback function

45

©

AN152
GD32VW553 BLE Development Guide

GigaDevice
2.5.34. ble_conn_tx_pwr_report_ctrl
Prototype: ble_status_t ble_conn_tx_pwr_report_ctrl(uint8_t conidx, uint8_t local_en,
uint8_t remote_en)
Function: Set whether to send a notification to APP when the local or peer
transmit power changes on the established connection
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
local_en, whether to notify APP when the local transmit power changes
remote_en, whether to notify APP when the peer transmit power changes
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,
a BLE_CONN_EVT_TX_PWR_RPT_CTRL_RSP
message is sent to the callback function. If local enable is successfully set,
when the local transmit power changes,
a BLE_CONN_EVT_LOC_TX_PWR_RPT_INFO
message is sent to the callback function. If remote enable is successfully set,
when the peer tx power changes,
a BLE_CONN_EVT_PEER_TX_PWR_RPT_INFO
message is sent to the callback function
2.5.35. ble_conn_path_loss_ctrl

Prototype: ble_status_t ble_conn_path_loss_ctrl (uint8_t conidx, uint8_t enable,
uint8_t high_threshold, uint8_t high_hysteresis, int8_t low_threshold,
uint8_t low_hysteresis, uint16_t min_time)
Function: Set the path loss notification on the established connection
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message enable, whether to notify of path
loss high_threshold, the threshold of path loss in the high zone

46

e AN152

GigaDevice GD32VW553 BLE Development Guide

high_hysteresis, the hysteresis value of the high
threshold low_threshold, the threshold of path loss in the low zone
low_hysteresis, the hysteresis value of the low threshold
min_time, the minimum number of connection events to stay after
the path changes
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,
a BLE_CONN_EVT_PATH_LOSS_CTRL_RSP
message is sent to the callback function. If it is successfully set to enable,
when the path zone changes,
a BLE_CONN_EVT_PATH_LOSS_THRESHOLD_INFO

message is sent to the callback function

2.6. BLE security API

The header file is ble_sec.h.

The BLE security module mainly provides interfaces required for interaction during pairing,
authentication, encryption, and other processes.

2.6.1. Security message type

APP can register a callback function with the BLE security module, and the BLE security
module will send the following event messages to APP through the callback function.

m BLE_SEC_EVT_PAIRING_REQ_IND

This message is used to notify APP after the pairing request initiated by the peer device is
received. The message data type is ble_gap_pairing_req_ind_t, including the peer
authentication request level, etc. APP can call ble_sec_pairing_req_cfm to reply.

B BLE _SEC_EVT_LTK REQ_IND

This message is used to get the long term key of the paired device from APP during
authentication. The message data type is ble_gap_ltk_req_ind_t, including the LTK size
information. APP can call ble_sec_ltk_req_cfm to reply.

B BLE SEC EVT_KEY _DISPLAY_REQ_IND

This message is used to get the PIN CODE from APP during pairing. The message data type

47

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

is ble_gap_tk req_ind_t, including the connection index information. APP can call
ble_sec_key display_enter_cfm to reply.
B BLE SEC EVT _KEY_ENTER_REQ_IND

This message is used to notify APP when the user is required to enter the passkey during
pairing. The message data type is ble_gap_tk req_ind_t, including the connection index
information. APP can call ble_sec_key display_enter_cfm to reply.

B BLE_SEC_EVT_KEY_OOB_REQ_IND

This message is used to notify APP when APP is required to use OOB data as the temp key.
The message data type is ble_gap_tk_req_ind_t, including the connection index information.
APP can call ble_sec_oob_req_cfm to reply.

B BLE _SEC_EVT_NUMERIC_COMPARISON_IND

This message is used to notify APP when the user is required to compare the generated
number on both sides during pairing. The message data type is ble_gap_nc_ind_t, including
the number to be compared. APP can call ble_sec_nc_cfm to reply.

B BLE SEC_EVT_IRK_REQ_IND

This message is used to notify APP when the local IRK needs to be obtained and distributed
during pairing. The message data type is ble_gap_irk_req_ind_t, including the connection
index information. APP can call the ble_sec_irk_req_cfm function to reply.

B BLE SEC_EVT_CSRK_REQ_IND

This message is used to notify APP when the local CSRK needs to be obtained and distributed
during pairing. The message data type is ble_gap_csrk_req_ind_t, including the connection
index information. APP can call the ble_sec_csrk_req_cfm function to reply.

B BLE_SEC_EVT_OOB_DATA_REQ_IND

This message is used to get OOB data from APP when using the OOB mode during pairing.
The message data type is ble_gap_oob_data_req_ind_t, including the connection index
information. APP can call the ble_sec_oob_data_req_cfm function to reply.

B BLE SEC EVT _PAIRING_SUCCESS INFO

This message is used to notify APP after the pairing is successful. The message data type is
ble_sec_pairing_success_t, including whether it is a secure connection, the pairing level, etc.
B BLE_SEC_EVT_PAIRING_FAIL_INFO

This message is used to notify APP when the pairing fails. The message data type is
ble_sec_pairing_fail_t, including the reason for pairing failure, etc.
B BLE_SEC_EVT_SECURITY_REQ_INFO

This message is used to notify APP when the master receives the security request initiated
by the peer slave. The message data type is ble_sec_security req_info_t, including the
authentication request level and other information of the peer device. APP can decide to
initiate encryption or pairing based on whether there is a LTK from the peer device after
receiving the message.

B BLE SEC_EVT_ENCRYPT_REQ_IND

48

©

AN152
GD32VW553 BLE Development Guide

GigaDevice

This message is used to notify APP after the encryption request initiated by the peer device
is received. The message data type is ble_gap_encrypt_req_ind_t, including the ediv, random
number, etc. APP can call ble_sec_encrypt_req_cfm to reply.
B BLE SEC EVT_ENCRYPT_INFO
This message is used to notify APP after encryption is completed. The message data type is
ble_sec_encrypt_info_t, including the encryption success or failure status. If successful, it
also contains the pairing level and other information.
B BLE_SEC_EVT_OOB_DATA_GEN_INFO
This message is used to notify APP after APP calls ble_sec_oob_data_gen to generate a set
of OOB data. The message data type is ble_sec_oob_data_info_t, including the generated
OOB data.
B BLE SEC EVT_KEY_PRESS NOTIFY_RSP
This message returns the result of APP calling ble_sec_key press_notify. The message data
type is ble_gap_key press_ntf rsp_t, including the status of sending key press notification.
B BLE SEC EVT_KEY_PRESS_INFO
This message is used to notify APP after the key press notification of the peer device is
received. The message data type is ble_gap_key pressed_info_t, including the key press
type and other information of the peer device.

2.6.2. ble_sec_init
Prototype: ble_status_t ble_sec_init(void)
Function: Initialize the BLE security module.
Input parameter: None
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status_t on failure

2.6.3. ble_sec_callback_register

Prototype: ble_status_t ble_sec_callback_register(ble_sec _evt handler _t callback)
Function: The interface is used to register the event message handler with

the ble sec module.
Input parameter: callback, callback handler. For the description of security messages,

See Security message type.

Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure.

49

G AN152

GD32VW553 BLE Development Guide

GigaDevice
2.6.4. ble_sec_security_req

Prototype: ble_status_t ble_sec_security_req(uint8_t conidx, uint8_t auth)

Function: Send a security request message for active pairing as a slave.

Input parameter: conidx, connection index auth, indicating the pairing security type.

Refer to the enum ble_gap_auth_mask_t.

Output parameter: None

Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure.
2.6.5. ble_sec_bond_req

Prototype:ble_status_t ble_sec_bond_req(uint8_t conidx,

ble_gap_pairing_param_t *p_param, uint8_t sec_req_level)

Function: Send a pairing request message for active pairing as a master, or respond to
the security request from the peer slave to initiate pairing after receiving
the BLE_SEC_EVT_SECURITY_REQ_INFO message

Input parameter: conidx, connection index

p_param, the parameter of the pairing request message. Refer to
the structure ble_gap_pairing_param_t
sec_req_level, security request level. Refer to the enum ble_gap_sec_req_t
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure.
2.6.6. ble_sec_encrypt_req

Prototype: ble_status_t ble_sec_encrypt_req(uint8_t conidx, ble_gap Itk _t *p_peer_ltk)
Function: Send an encryption request when there is a LTK from the peer device
Input parameter: conidx, connection index

p_peer_lItk, the peer Itk

Output parameter: None

50

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.6.7.

2.6.8.

Return value: Return 0 on successful execution, and return the error code defined in
ble_status t on failure.

ble_sec_key_press_notify

Prototype: ble_status_t ble_sec_key press_notify(uint8_t conidx, uint8_t type)
Function: Send a keypress notify message
Input parameter: conidx, connection index
type, 0: Passkey entry started
1: Passkey digit entered
2: Passkey digit erased
3: Passkey cleared
4: Passkey entry completed
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,
a BLE_SEC_EVT_KEY_PRESS_NOTIFY_RSP

message is sent to the callback function

ble_sec_key_display_enter_cfm

Prototype: ble_status_t ble_sec_key display_enter_cfm(uint8_t conidx, bool accept,
uint32_t passkey)
Function: This function is used to reply PIN CODE or passkey during pairing
after receiving BLE_SEC_EVT_KEY_DISPLAY_REQ_IND
or BLE_SEC_EVT_KEY_ENTER_REQ_IND in the callback function.
Input parameter: conidx, connection index
accept, whether to accept the request
passkey, the value range is 000000-999999
Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure.

51

©

AN152
GD32VW553 BLE Development Guide

GigaDevice
2.6.9. ble_sec_oob_req_cfm

Prototype: ble_status_t ble_sec_oob_req_cfm(uint8_t conidx, bool accept, uint8_t *p_key)

Function: This function is used to reply OOB TK during pairing after receiving
the BLE_SEC_EVT_KEY_OOB_REQ_IND message in the callback function

Input parameter: conidx, connection index

accept, whether to accept the request
p_key, 128-bit key value

Output parameter: None

Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure.
2.6.10. ble_sec_nc_cfm

Prototype: ble_status_t ble_sec_nc_cfm(uint8_t conidx, bool accept)

Function: This function is used to reply the results of numeric comparison during pairing
after receiving the BLE_SEC_EVT_NUMERIC_COMPARISON_IND
message in the callback function

Input parameter: conidx, connection index

accept, whether the results of numeric comparison are consistent
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure.
2.6.11. ble_sec_Itk_req_cfm

Prototype: ble_status_t ble_sec_Itk_req_cfm(uint8_t conidx, uint8_t accept,
ble_gap_ltk_t *p_ltk)
Function: This function is used to reply the local LTK information or reject the request
after receiving the BLE_SEC_EVT_LTK_REQ_IND message in the callback function
Input parameter: conidx, connection index

accept, whether to accept the request

52

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.6.12.

2.6.13.

p_ltk, a pointer to the Itk value
Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure.

ble_sec_irk_req_cfm

Prototype: ble_status_t ble_sec_irk_req_cfm(uint8_t conidx, uint8_t accept,
ble_gap_irk_t *p_irk)
Function: The function is used to reply the local IRK information or reject the request
after receiving the BLE_SEC_EVT_IRK_REQ_IND message in the callback function

Input parameter: conidx, connection index

accept, whether to accept the request

p_irk, a pointer to the irk value
Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure.

ble_sec_csrk_req_cfm

Prototype: ble_status_t ble_sec_csrk_req_cfm(uint8_t conidx, uint8_t accept,
ble_gap_csrk_t *p_csrk)
Function: This function is used to reply the local CSRK information or reject the request
after receiving the BLE_SEC_EVT_CSRK_REQ_IND message in the callback function
Input parameter: conidx, connection index
accept, whether to accept the request
p_csrk, a pointer to the csrk value
Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure.

53

G AN152

GigaDevice GD32VW553 BLE Development Guide

2.6.14. ble_sec_encrypt_req_cfm

Prototype: ble_status_t ble_sec_encrypt_req_cfm(uint8_t conidx, bool found, uint8_t *p_ltk,
uint8_t key_size)
Function: This function is used to reply the local LTK information or reject the request
during encryption after receiving the BLE_SEC_EVT_ENCRYPT_REQ_IND
message in the callback function
Input parameter: conidx, connection index
found, whether the key exists
p_ltk, a pointer to the local Itk value
key_size, key size
Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure.

2.6.15. ble_sec_pairing_req_cfm

Prototype: ble_status_t ble_sec_pairing_req_cfm(uint8_t conidx, uint8_t accept,
ble_gap_pairing_param_t *p_param, uint8_t sec_req_Ivl)
Function: This function is used to reply the pairing response to the peer device for setting
or reject the request after receiving the BLE_SEC_EVT_PAIRING_REQ_IND
message in the callback function
Input parameter: conidx, connection index
accept, whether to accept the request
p_param, the parameter of the pairing response message.
Refer to the structure ble_gap_pairing_param_t
sec_req_level, security request level. Refer to the enum ble_gap_sec _req_t
Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure.

54

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.6.16.

2.6.17.

2.7.

ble_sec_oob_data_req_cfm

Prototype: ble_status_t ble_sec_oob_data_req_cfm(uint8_t conidx, uint8_t accept,
uint8_t *p_conf, uint8_t *p_rand)
Function: This function is used to reply the local OOB information or reject the request
during pairing after receiving the BLE_SEC_EVT_OOB_DATA_ REQ_IND
message in the callback function.
Input parameter: conidx, connection index
accept, whether to accept the request
p_conf, the peer confirm value
p_rand, the peer random value
Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure.

ble_sec_oob_data_gen

Prototype: ble_status_t ble_sec_oob_data_gen(void)

Function: This function is used to generate a set of OOB data.

Input parameter: None

Output parameter: None

Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After OOB data is successfully generated,
aBLE_SEC_EVT_OOB_DATA_GEN_INFO

message is sent to the callback function

BLE list API

The header file is ble_list.h.

The BLE list module mainly provides interfaces for operating FAL, RAL, and PAL, including
operations such as adding devices to the list, deleting devices from the list, and clearing the
list.

55

©

AN152
GD32VW553 BLE Development Guide

GigaDevice
2.7.1. List message type
B BLE LIST EVT _OP_RSP
This message returns the result of APP calling the function ble_fal _op, ble fal_list_set,
ble_fal list clear, ble ral _op, ble _ral_list_set, ble _ral_list_clear, ble_pal_op, ble_pal_list_set,
or ble_pal_list_clear to operate the list. The message data type is ble_list_data_t, including
the list type, op type, etc. Determine which list operation the reply is for according to the type
in the data.
B BLE LIST EVT LOC RPA_GET_RSP
This message returns the result of APP calling ble_loc_rpa_get to get the local resolvable
address. The message data type is ble_list_data_t; the list type is BLE_RAL_TYPE, and the
op type is GET_LOC_RPA.
B BLE _LIST_EVT_PEER_RPA_GET_RSP
This message returns the result of APP calling ble_peer_rpa_get to get the peer resolvable
address. The message data type is ble_list_data_t; the list type is BLE_RAL_TYPE, and the
op type is GET_PEER_RPA.
2.7.2. ble_list_init
Prototype: ble_status_t ble_list_init(void)
Function: Initialize the BLE list module
Input parameter: None
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
2.7.3. ble_list_callback_register
Prototype: ble_status_t ble_list_callback_register(ble_list_evt_handler_t callback)
Function: Register the callback function for processing BLE list messages
Input parameter: callback, a function that processes BLE list messages.
For the description of list messages, see List message type.
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
2.7.4. ble_fal_op

Prototype: ble_status_t ble_fal op(ble_gap_addr_t *p_addr_info, bool add)

56

©

AN152
GD32VW553 BLE Development Guide

GigaDevice
Function: Add the specified device to or remove it from the filter accept list
Input parameter: p_addr_info, device address pointer add,
true means to add to FAL, false means to remove from FAL
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution, a BLE_LIST_EVT_OP_RSP
message is sent to the callback function; list type is BLE_FAL_TYPE,
and op type is RMV_DEVICE_FROM_LIST or ADD_DEVICE_TO_LIST
2.7.5. ble_fal_list_set
Prototype: ble_status_t ble_fal_list_set(uint8_t num, ble_gap_addr_t *p_addr_info)
Function: Set the filter accept list. This operation will update the whole FAL to
the specified content
Input parameter: num, the number of devices that need to be set to FAL
p_addr_info, device array, which contains the information of
num addresses
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,
a BLE_LIST_EVT_OP_RSP message is sent to the callback function;
list type is BLE_FAL_TYPE, and op type is SET_DEVICES_TO_LIST
2.7.6. ble_fal_clear

Prototype: ble_status_t ble_fal_clear(void)

Function: Clear the filter accept list

Input parameter: None

Output parameter: None

Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,

a BLE_LIST_EVT_OP_RSP message is sent to the callback function,
57

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.7.7.

2.7.8.

2.7.9.

list type is BLE_FAL_TYPE, and op type is CLEAR_DEVICE_LIST

ble_fal_size_get

Prototype: uint8_t ble_fal_size get(void)

Function: Get the maximum number of elements in the filter accept list
Input parameter: None

Output parameter: None

Return value: The maximum number of elements in the filter accept list

ble_ral_op

Prototype: ble_status_t ble_ral_op(ble_gap_ral_info_t *p_ral_info, bool add)
Function: Add the specified device to or remove it from the resolving list
Input parameter: p_ral_info, RAL structure pointer, including the identity address, IRK, etc.
add, true means to add to RAL, false means to remove from RAL
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,
a BLE_LIST_EVT_OP_RSP message is sent to the callback function;
list type is BLE_RAL_TYPE, and op type is

RMV_DEVICE_FROM_LIST or ADD_DEVICE_TO_LIST

ble_ral_list_set

Prototype: ble_status_t ble_ral_list_set(uint8_t num, ble_gap_ral_info_t *p_ral_info)
Function: Set the resolving list. This operation will update the whole RAL to
the specified content
Input parameter: num, the number of devices that need to be set to RAL p_ral_info,
RAL structure array, which contains num RAL structures
Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure. After execution,

58

©

AN152
GD32VW553 BLE Development Guide

GigaDevice
a BLE_LIST_EVT_OP_RSP message is sent to the callback function;
list type is BLE_RAL_TYPE, and op type is SET_DEVICES _TO _LIST
2.7.10. ble_ral_clear
Prototype: ble_status_t ble_ral_clear(void)
Function: Clear the resolving list
Input parameter: None
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,
a BLE_LIST_EVT_OP_RSP message is sent to the callback function;
list type is BLE_RAL_TYPE, and op type is CLEAR_DEVICE_LIST
2.7.11. ble_ral_size_get
Prototype: uint8_t ble_ral_size get(void)
Function: Get the maximum number of elements in the resolving list
Input parameter: None
Output parameter: None
Return value: The maximum number of elements in the resolving list
2.7.12. ble_loc_rpa_get

Prototype: ble_status_t ble_loc_rpa_get(uint8_t *p_peer_id, uint8_t peer_id_type)
Function: Get the local resolvable private address currently used for the specified device
Input parameter: p_peer _id, the identity address of the specified device
peer_id_type, the identity address type of the specified device

Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure. After execution,

aBLE_LIST_EVT_LOC_RPA_GET_RSP message is sent to

the callback function.

59

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.7.13.

2.7.14.

2.7.15.

ble_peer_rpa_get

Prototype: ble_status_t ble_peer_rpa_get(uint8_t *p_peer _id, uint8_t peer_id_type)
Function: Get the resolvable private address currently used for the specified device
Input parameter: p_peer _id, the identity address of the specified device
peer_id_type, the identity address type of the specified device
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,
aBLE_LIST_EVT_PEER _RPA_GET_RSP message is sent to

the callback function

ble_pal_op

Prototype: ble_status_t ble_pal_op(ble_gap_pal_info_t *p_pal_info, bool add)
Function: Add the specified device to or remove it from the periodic advertising list
Input parameter: p_pal_info, PAL structure pointer, including the address, SID, etc.
add, true means to add to PAL, false means to remove from PAL
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution, a BLE_LIST_EVT_OP_RSP
message is sent to the callback function; list type is BLE_PAL_TYPE,

and op type is RMV_DEVICE_FROM_LIST or ADD_DEVICE_TO_LIST

ble_pal_list_set

Prototype: ble_status_t ble_pal_list_set(uint8_t num, ble_gap_pal_info_t *p_pal_info)
Function: Set the periodic advertising list. This operation will update the whole PAL to
the specified content
Input parameter: num, the number of devices that need to be set to PAL
p_ral_info, PAL structure array, which contains num PAL structures

Output parameter: None

60

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.7.16.

2.7.17.

2.8.

2.8.1.

Return value: Return 0 on successful execution, and return the error code defined
in ble_status_t on failure. After execution,
a BLE_LIST_EVT_OP_RSP message is sent to the callback function;

list type is BLE_PAL_TYPE, and op type is SET_DEVICES_TO_LIST

ble_pal_clear

Prototype: ble_status_t ble_pal_clear(void)
Function: Clear the periodic advertising list
Input parameter: None
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,
a BLE_LIST_EVT_OP_RSP message is sent to the callback function;

list type is BLE_PAL_TYPE, and op type is CLEAR_DEVICE_LIST

ble_pal_size_get

Prototype: uint8_t ble_pal_size get(void)

Function: Get the maximum number of elements in the periodic advertising list
Input parameter: None

Output parameter: None

Return value: The maximum number of elements in the periodic advertising list

BLE periodic sync API

The header file is ble_per_sync.h.

The BLE periodic sync module mainly provides interfaces for synchronizing periodic
advertising, reporting received periodic advertising data, etc.

Periodic sync message type
APP can register a callback function with the BLE periodic sync module, and the BLE protocol

stack will send the following event message to APP through the callback function.

B BLE PER_SYNC_EVT_STATE_CHG
61

©

AN152
GD32VW553 BLE Development Guide

GigaDevice

This message is sent to the callback function when the periodic sync state changes. The

message data type is ble_per_sync_state_chg_t, including the new state and the reason for

change.

B BLE PER _SYNC _EVT _REPORT

This message is sent to the callback function after the periodic advertising report is received.

The message data type is ble_gap _adv_report_info_t, including the device address for

sending periodic advertising, the sent PHY, advertising data, etc.

B BLE _PER_SYNC_EVT_ESTABLISHED

This message is sent to the callback function after the periodic advertising is synchronized.

The message data type is ble_per_sync established t, including the the PHY of

synchronized periodic advertising, interval, SID, etc.

B BLE PER SYNC EVT RPT_CTRL_RSP

This message returns the result of APP calling ble_per _sync_report_ctrl to set the report

content. The message data type is ble_per_sync_rpt_ctrl_rsp_t, including the set status.
2.8.2. ble_per_sync_init

Prototype: ble_status_t ble_per_sync_init(void)

Function: Initialize the BLE periodic sync module

Input parameter: None

Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
2.8.3. ble_per_sync_callback_register

Prototype: ble_status_t ble_per_sync_callback_register(

ble_per_sync_evt_handler_t callback)
Function: Register the callback function that processes periodic sync messages.
For the description of per sync messages, see Periodic sync message type.

Input parameter: callback, callback function that processes periodic sync messages

Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
2.8.4. ble_per_sync_start

Prototype: ble_status_t ble_per_sync_start (ble_gap_local_addr_type town_addr_type,

ble_gap_per_sync_param_t *p_param)
62

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.8.5.

2.8.6.

Function: Start periodic sync
Input parameter: own_addr_type, the local address type used in the sync process
p_param, periodic sync parameter structure pointer

Output parameter: None

Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,
a BLE_PER_SYNC_EVT_STATE_CHG message is sent to
the callback function. If successfully synchronized,
a BLE_PER_SYNC_EVT_ESTABLISHED message is also sent to
the callback function, and a BLE_ PER_SYNC_EVT_REPORT

message is sent to report the received data

ble_per_sync_cancel

Prototype: ble_status_t ble_per_sync_cancel (void)

Function: Cancel the ongoing periodic sync process

Input parameter: None

Output parameter: None

Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,
aBLE_PER_SYNC_EVT_STATE_CHG

message is sent to the callback function

ble_per_sync_terminate

Prototype: ble_status_t ble_per_sync_terminate (uint8_t sync_idx)

Function: Abort the periodic sync train that has been successfully synchronized

Input parameter: sync_idx, sync index

Output parameter: None

Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution,

a BLE_PER_SYNC_EVT_STATE_CHG
63

©

AN152
GD32VW553 BLE Development Guide

GigaDevice
message is sent to the callback function
2.8.7. ble_per_sync_ctrl
Prototype: ble_status_t ble_per_sync_ctrl(uint8_t sync_idx, uint8_t ctrl)
Function: Modify the content of notification reported after successful synchronization
Input parameter: sync_idx, sync index
ctrl, periodic sync report control bit, which is composed of bits in
ble_per_sync_rpt_ctrl_bit _t
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
After the setting, a BLE_PER_SYNC_EVT_RPT_CTRL_RSP
message is sent to the callback function
2.9. BLE storage API
The header file is ble_storage.h. The module uses flash to store and manage the bond
information of the peer device, including peer_irk, peer_Itk, peer_csrk, local_irk, local_ltk,
local_csrk, etc.
The macro definition BLE_ PEER_NUM_MAX in the header file is used to define the maximum
number of peer devices. When the number of peer devices stored has reached the upper limit
while new peer information needs to be stored, use the LRU algorithm to delete the oldest
peer information that has not been used.
2.9.1. ble_storage_init

Prototype: ble_status_t ble_storage_init(void)

Function: Initialize the storage module. To get all the peer information from flash,
call the function once during initialization

Input parameter: None

Output parameter: None

Return value: Return 0 on successful execution, and return

the error code defined in ble_status_t on failure.

64

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.9.2.

2.9.3.

294,

ble_peer_data_bond_store

Prototype: ble_status_t ble_peer_data_bond_store(ble_gap_addr_t *addr,
ble_gap_sec bond_data_t *bond_data)
Function: The function is used to store the bond information of the peer device,
which will also be saved in flash. If the bond information with the same index
already exists, it will be updated and saved. If keys_user_mgr is false during
BLE adapter config, the BLE security will automatically store the bond information,
and APP does not need to perform related operations.

Input parameter: addr, the address of the connected device. If bond_data does not contain
identity addr, the address will be stored as an index. If bond_data
contains identity addr, identity addr will be stored as an index, and
this address will not work; however, it cannot be empty
bond_data: the bond information needs to store

Output parameter: None

Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure.

ble_peer_data_bond_load

Prototype: ble_status_t ble_peer_data_bond_load(ble_gap_addr _t *addr,
ble_gap_sec_bond_data_t *bond_data)
Function: The function is used to get bond information
Input parameter: addr, which can be identity addr or RPA, with the address as an index to
get information
Output parameter: bond_data, the obtained bond information
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure.

ble_peer_data_delete

Prototype: ble_status_t ble_peer_data_delete(ble_gap_addr_t *addr)

65

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.9.5.

2.10.

2.10.1.

Function: The function is used to delete the peer information corresponding to
the specified addr, and the content in flash will also be deleted.
Input parameter: addr, which can be identity addr or RPA, with the address as an index
to delete the peer information
Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure.

ble_peer_all_addr_get

Prototype: ble_status_t ble_peer_all_addr_get(uint8_t *num, ble_gap_addr_t *id_addrs)
Function: The function is used to get the identity addr of all peer devices under
the storage module

Input parameter: num, the num pointer value indicates the maximum number of peer

devices that need to be obtained, which cannot

exceed BLE_PEER_NUM_MAX and determines the memory size of

the id_addrs pointer to be num*sizeof(ble_gap_addr_t)
Output parameter: num, whose value is the actual number obtained id_addrs,

the id_addrs pointer stores the actually obtained peer identity addr

Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure.

BLE gatts API

The header file is ble_gatts.h.

The BLE GATT server module mainly provides interfaces for registering/deleting GATT
service, sending notification/indication to the client, etc.

gatts message type

BLE services can register a callback function with the BLE GATT server module, and the BLE
GATT server module will send the following event messages to BLE services through the
callback function.

m BLE_SRV_EVT_SVC_ADD_RSP
66

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

This message returns the result of calling the ble_gatts_svc_add function to add a service to
the GATT server module. The message data type is ble_gatts_svc_add_rsp_t, including the
status of the added service. If the status is 0, it also contains the assigned service ID and the
start handle value of the service in the database.

B BLE SRV_EVT _SVC_RMV_RSP

This message returns the result of calling the ble_gatts_svc_rmv function to remove a service
from the GATT server module. The message data type is ble_gatts _svc_rmv_rsp_t, including
the status of the removed service and the service ID.
B BLE_SRV_EVT_CONN_STATE_CHANGE_IND

This message is sent to the callback function when the device connection state changes. The
message data type is ble_gatts_conn_state change_ind_t, including the connection status.
If the connection state is connected, the connection index and address information of the peer
device will be included; If the connection state is disconnected, the reason for disconnection
will also be included.

B BLE SRV _EVT GATT_OPERATION

This message is sent to the callback function when interacting with the peer GATT client. The
message data type is ble_gatts _op_info_t, including the subevent, connection index of
interacted connection, and message data of different subevents . The message includes the
following subevents:

® BLE_SRV_EVT_READ_REQ

When the peer client initiates the attribute read request, this subevent will be notified
to the callback function. The corresponding data type is ble_gatts read_req_t,
including the attribute index to be read, and the offset and the maximum length of
the attribute value. At the same time, the message also contains pending_cfm flag,
through which the upper layer can determine whether to directly reply to the peer
client with the read result through the GATT server module after the message is
process by the callback function. If required, copy the data to the pre-allocated
location (the maximum length) of the server module; otherwise, set pending_cfm to
true, and call ble_gatts _svc_attr read_cfm to reply as required.

e BLE_SRV_EVT WRITE_REQ

When the peer client initiates the attribute write request, this subevent will notify the
callback function by using the data type of ble_gatts write_req_t, including the
attribute index to be written, and the offset, length, and content of the written data.
At the same time, the message also contains pending_cfm flag, through which the
upper layer can determine whether to directly reply with the write result through the
GATT server module after the message is process by the callback function. If not
required, set pending_cfm to true, and call ble_gatts_svc_attr_write_cfm to reply as
required.

® BLE_SRV_EVT_NTF_IND_SEND_RSP

67

©

AN152
GD32VW553 BLE Development Guide

GigaDevice
This subevent returns the result of calling ble gatts ntf ind_send or
ble_gatts_ntf_ind_send_by handle to send a GATT notification or indication. The
subevent data type is ble_gatts_ntf_ind_send_rsp_t, including the status of the sent
data, service id, and attribute index.
® BLE SRV_EVT_NTF_IND_MTP_SEND_RSP
This subevent returns the result of calling ble_gatts ntf ind_mtp_send to send
notifications or indications to multiple remote devices. The message data type is
ble_gatts_ntf_ind_mtp_send_rsp_t, including the status of the sent data, service id,
and attribute index.
2.10.2. ble_gatts_init
Prototype: ble_status_t ble_gatts_init(void)
Function: Initialize the BLE GATT server module
Input parameter: None
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
2.10.3. ble_gatts_svc_add

Prototype: ble_status_t ble_gatts svc_add(uint8_t *p_svc_id, const uint8_t *uuid,
uint16_t start_hdl, uint8_t info, const void *p_table, uint16_t table_length,
p_fun_srv_cb srv_cb)
Function: Add a service to the GATT server module.
Input parameter: uuid, service UUID address
start_hdl, service start attribute handle value; 0 means that the handle is not
specified and is automatically assigned by the module
info, service information. For details, see ble_gatt_svc_info_bf
p_table, all attribute arrays of the service; each attribute
structure is ble_gatt_attr_desc_t
table_length, the length of service attribute array
srv_cb, the message handler function of GATT server. For the message

type, see gatts message type

Output parameter: p_svc _id, the ID assigned by the BLE GATT server module to the service

68

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.10.4.

2.10.5.

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
After execution, a BLE_PRF_MGR_EVT_SVC_ADD_RSP

message is sent to the callback function

ble_gatts_svc_rmv

Prototype: ble_status_t ble_gatts_svc_rmv(uint8_t svc_id)

Function: remove a service

Input parameter: svc_id, the ID assigned to the service when ble_gatts _svc_add is called

Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
After execution, a BLE_SRV_EVT_SVC_RMV_RSP

message is sent to the callback function

ble_gatts_ntf_ind_send

Prototype: ble_status_t ble_gatts ntf _ind_send (uint8_t conn_idx, uint8_t svc _id,
uint16_t att_idx, uint8_t *p_val, uint16_t len, ble_gatt_evt_type_t evt_type)
Function: Send a notification/indication
Input parameter: conn_idx, connection index
svc_id, the ID assigned to the service when ble_gatts_svc_add is called
att_idx, the index value of the attribute in the array when
ble_gatts_svc_add is called
p_val, the address of data to be sent
len, the length of data to be sent
evt_type, whether the type of data sent this time is notification or indication
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
After execution, a BLE_SRV_EVT_GATT_OPERATION
message with a subevent of BLE_SRV_EVT_NTF_IND_SEND_RSP is

sent to the callback function

69

©

AN152
GD32VW553 BLE Development Guide

GigaDevice
2.10.6. ble_gatts_ntf_ind_send_by handle
Prototype: ble_status_t ble_gatts ntf ind_send_by handle(uint8_t conn_idx,
uint16_t handle, uint8_t *p_val, uint16_t len, ble_gatt_evt type tevt_type)
Function: Send a notification/indication through the attribute handle
Input parameter: conn_idx, connection index
handle, the handle value of the attribute, which can be obtained through
the index of the attribute in the array and the start handle of
the service when ble_gatts_svc_add is called
p_val, the address of data to be sent
len, the length of data to be sent
evt_type, whether the type of data sent this time is notification or indication
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
After execution, a BLE_SRV_EVT_GATT_OPERATION
message with the subevent of BLE_SRV_EVT_NTF_IND_SEND_ RSP
is sent to the callback function
2.10.7. ble_gatts_ntf_ind_mtp_send

Prototype: ble_status_t ble_gatts ntf _ind_mtp_send (uint32_t conidx_bf, uint8_t svc_id,
uint16_t att_idx, uint8_t *p_val, uint16_t len, ble_gatt_evt_type_t evt_type)
Function: Send a notification/indication to multiple connections
Input parameter: conidx_bf, connection index bit combination, bit O represents
connection index 0x00, bit 1 represents connection index 0x01, and so on
svc_id, the ID assigned to the service when ble_gatts_svc_add is called
att_idx, the index value of the attribute in the array when
ble_gatts_svc_add is called
p_val, the address of data to be sent
len, the length of data to be sent

evt_type, whether the type of data sent this time is natification or indication

70

©

AN152
GD32VW553 BLE Development Guide

GigaDevice
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
After execution, a BLE_SRV_EVT_GATT_OPERATION
message with the subevent of BLE_SRV_EVT _NTF_IND_MTP_SEND_RSP
is sent to the callback function
2.10.8. ble_gatts_mtu_get
Prototype: ble_status_t ble_gatts mtu_get(uint8_t conidx, uint16_t *p_mtu)
Function: Obtain GATT MTU of the connection.
Input parameter: conn_idx, connection index
Output parameter: p_mtu, obtained GATT MTU of the connection
Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
2.10.9. ble_gatts_svc_attr_write_cfm
Prototype: ble_status_t ble_gatts_svc_attr_write_cfm(uint8_t conn_idx, uint16_t token,
uint16_t status)
Function: When receiving BLE_SRV_EVT_GATT_OPERATION and the subevent
is BLE_SRV_EVT_WRITE_REQ, if automatic reply by GATT server module is
not needed, pending_cfm in the message data should be sent to true,
then ble_gatts_svc_attr_write_cfm should be called by user to confirm the
write request according to user requirement.
Input parameter: conn_idx, connection index
token, GATT token, which is obtained in the
BLE_SRV_EVT_WRITE_REQ message
status, a status of replying to the write request
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
2.10.10. ble_gatts_svc_attr_read_cfm

Prototype: ble_status_t ble_gatts_svc_attr_read_cfm(uint8_t conn_idx, uint16_t token,

71

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.10.11.

2.11.

2.11.1.

uint16_t status, uint16_t total_len, uint16_t value_len, uint8_t *p_value)
Function: When receiving BLE_SRV_EVT_GATT_OPERATION and the subevent
is BLE_SRV_EVT_READ_REQ, if automatic reply by GATT server module
is not needed, pending_cfm in the message data should be sent to true,
then ble_gatts_svc_attr_read_cfm should be called by user to confirm
the read request according to user requirement.
Input parameter: conn_idx, connection index
token, GATT token, which is obtained in the
BLE_SRV_EVT_READ_REQ message
status, a status of replying to the read request
total_len, the total length of attribute to be read
value_len, the attribute data length replied with to the read request
p_value, the attribute data content replied with to the read request
Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure

ble_gatts_get_start_hdl

Prototype: ble_status_t ble_gatts _get_start_hdl(uint8_t svc_id, uint16_t *p_handle)
Function: Obtain the start handle value allocated by the GATT server module to the service.
Input parameter: svc_id, service id, which is obtained in ble_gatts svc_add

Output parameter: p_handle, obtained start handle value

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure

BLE gattc API

The header file is ble_gattc.h.

The BLE GATT client module mainly provides the following functions: GATT discovery; read
and write attribute value from the peer GATT server, etc.

gattc message type

BLE services can register a callback function to the BLE GATT client module, which will send

72

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.11.2.

the following event messages to BLE services through the callback function.

m BLE_CLI_EVT_CONN_STATE_CHANGE_IND

This message is sent to the callback function when the device connection state changes. The

message data type is ble_gattc_conn_state change_ind_t, including the connection state

conn_state. If the connection state is connected, the connection index and address

information of the peer device will be included; however, if the connection state is

disconnected, the reason for disconnection will also be included.

m BLE_CLI_EVT_GATT_OPERATION

This message is sent to the callback function when interacting with the peer GATT server.

The message data type is ble_gattc_op_info_t, including the subevent gattc_op_sub_evt of

GATT client operation, connection index conn_idx, and message data of different subevents.

The message includes the following subevents:

® BLE CLI_EVT_SVC_DISC_DONE_RSP
After ble gattc_start_discovery is called to discover services of the peer GATT
server, this subevent returns whether the registered service is found. The subevent
data type is ble_gattc_svc_dis_done_t, including whether the service is found and
the number of instances.

® BLE CLI_EVT_READ_RSP
This subevent returns the result of reading the data of peer GATT server attribute
by calling ble_gattc_read. The subevent data type is ble_gattc_read_rsp_t,
including service uuid and characteristic uuid.

® BLE CLI EVT WRITE RSP
This subevent returns the result of writing data to the peer GATT server by calling
ble_gattc_write_req, ble_gattc_write_cmd, or ble_gattc_write_signed. The
subevent data type is ble_gattc write_rsp_t, including service uuid and
characteristic uuid.

® BLE CLI_EVT_NTF_IND_RCV
When the peer GATT server sends notification or indication, this subevent is sent to
the registered callback function. The subevent data type is ble_gattc_ntf ind_t,
including service uuid, characteristic uuid, and attribute handle.

ble_gattc_init

Prototype: ble_status_t ble_gattc_init(void)

Function: Initialize the GATT client module.

Input parameter: None

Output parameter: None

73

©

AN152
GD32VW553 BLE Development Guide

GigaDevice

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
2.11.3. ble_gattc_start_discovery

Prototype: ble_status_t ble_gattc_start_discovery(uint8_t conn_idx)

Function: Start to discover services in the peer GATT server.

Input parameter: conn_idx, connection index

Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
2.11.4. ble_gattc_svc_reg

Prototype: ble_status_t ble_gattc_svc_reg(ble_uuid_t *p_svc_uuid, p_fun_cli_cb p_cb)

Function: Register the callback function and service UUID to the BLE GATT client module.

Input parameter: p_svc_uuid, service uuid client pays attention to

p_cb, the message handler function of GATT client. For the message type,
see gattc message type.

Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
2.11.5. ble_gattc_read

Prototype: ble_status_t ble_gattc_read(uint8_t conidx, uint16_t hdl, uint16_t offset,
uint16_t length)

Function: Read the attribute data of the peer GATT server.
Input parameter: conidx, connection index

hdl, attribute handle

offset, data offset to be read

length, data length to be read
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status_t on

failure After execution, the BLE_CLI_EVT_GATT_OPERATION

message with a subevent of BLE_CLI_ EVT_READ_ RSP

74

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.11.6.

2.11.7.

will be sent to the registered callback function.

ble_gattc_write_req

Prototype: ble_status_t ble_gattc_write_req(uint8_t conidx, uint16_t hdl, uint16_t length,
uint8_t *p_value)
Function: Write data to peer server (write request)
Input parameter: conidx, connection index
hdl, attribute handle
length, data length to be written
p_value, data to be written
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status_t on
failure After execution, the BLE_CLI_EVT_GATT_OPERATION
message with a subevent of BLE_CLI_EVT_WRITE_RSP

will be sent to the callback function.

ble_gattc_write_cmd

Prototype: ble_status_t ble_gattc_write_cmd(uint8_t conidx, uint16_t hdl, uint16_t length,
uint8_t *p_value)
Function: Write data to peer server (write command)
Input parameter: conidx, connection index
hdl, attribute handle
length, data length to be written
p_value, data to be written
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status_t on
failure After execution, the BLE_CLI_EVT_GATT_OPERATION
message with a subevent of BLE_CLI_EVT_WRITE_RSP

will be sent to the registered callback function.

75

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.11.8.

2.11.9.

2.11.10.

2.11.11.

ble_gattc_write_signed

Prototype: ble_status_t ble_gattc_write_cmd(uint8_t conidx, uint16_t hdl, uint16_t length,
uint8_t *p_value)
Function: Write data to peer server (write signed)
Input parameter: conidx, connection index
hdl, attribute handle
length, data length to be written
p_value, data to be written
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status_t on
failure After execution, the BLE_CLI_EVT_GATT_OPERATION
message with a subevent of BLE_CLI_EVT_WRITE_RSP

will be sent to the registered callback function.

ble_gattc_mtu_update

Prototype: ble_status_t ble_gattc_mtu_update(uint8_t conidx)
Function: Update GATT mtu.

Input parameter: conidx, connection index

Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure

ble_gattc_mtu_get

Prototype: ble_status_t ble_status_t ble_gattc_mtu_get(uint8_t conidx, uint16_t *p_mtu)
Function: Obtain the GATT mtu value of the connection.

Input parameter: conidx, connection index

Output parameter: p_mtu, mtu size

Return value: Return 0 on success, and return the error code defined in ble_status_t on failure

ble_gattc_find_char_handle

Prototype: ble_status_t ble_gattc_find_char_handle(uint8_t conn_idx, ble_gattc_uuid_info_t
76

©

AN152
GD32VW553 BLE Development Guide

GigaDevice
*svc_uuid, ble_gattc_uuid_info_t *char_uuid, uint16_t *handle)
Function: Find the value handle value of the characteristic.
Input parameter: conidx, connection index
svc_uuid, service uuid
char_uuid, characteristic uuid
Output parameter: handle, attribute handle value
Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
2.11.12. ble_gattc_find_desc_handle
Prototype: ble_status_t ble_gattc_find_desc_handle(uint8_t conn_idx, ble_gattc_uuid_info_t
*svc_uuid, ble_gattc_uuid_info_t *char_uuid,
ble_gattc_uuid_info_t *desc_uuid, uint16_t *handle)
Function: Find the handle value of description.
Input parameter: conidx, connection index
svc_uuid, service uuid
char_uuid, characteristic uuid
desc_uuid, description uuid
Output parameter: handle, attribute handle value
Return value: Return 0 on success, and return the error code defined in ble_status_t on failure
2.12. BLE export API
The header file is ble_export.h.
The file contains the initialization of the BLE stack, BLE task and BLE APP task.
2.12.1. ble_stack_init

Prototype: void ble_stack_init(void)
Function: Initialize the BLE stack.
Input parameter: None

Output parameter: None

Return value: None

77

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.12.2.

2.12.3.

2.12.4.

2.12.5.

ble_stack_task_suspend

Prototype: void ble_stack_task suspend(void)
Function: Suspend the BLE stack task.

Input parameter: None

Output parameter: None

Return value: None

ble_stack_task_resume

Prototype: void ble_stack_task_resume(bool isr)

Function: Resume the BLE stack task. If BLE task is in the sleep mode, this function can
be called by an external interrupt to wake up the BLE task.

Input parameter: isr, which indicates whether it is called by an interrupt

Output parameter: None

Return value: None

ble_stack_task_init

Prototype: uint32_t ble_stack_task_init(uint32_t stack_size, uint32_t priority)
Function: Initialize the BLE task.
Input parameter: stack_size, the size of the task stack in four bytes
priority, task priority
Output parameter: None

Return value: 0 upon successful execution and other values upon failure.

ble_app_task_init

Prototype: uint32_t ble_app_task_init(uint32_t stack_size, uint32_t priority)
Function: Initialize the BLE APP task.
Input parameter: stack_size, the size of the task stack in four bytes
priority, task priority
Output parameter: None

Return value: 0 upon successful execution and other values upon failure.
78

©

AN152
GD32VW553 BLE Development Guide

GigaDevice
2.12.6. ble_local_app_msg_send

Prototype: bool ble_local_app_msg_send (void *p_msg, uint16_t msg_len)

Function: If the upper layer determines to handle the message asynchronously, it can
send a message to the BLE APP task, specifying that the message should be
handled in the callback function. In this case, ble_app_msg_hdl_reg should
be called to register the callback function in advance.

Input parameter: p_msg, message content

msg_len, the length of message content
Output parameter: None
Return value: Return "true" upon success and "false" upon failure.
2.12.7. ble_app_msg_hdl_reg

Prototype: void ble_app_msg_hdI_reg(ble_app_msg_hdI_t p_hdl)

Function: Work together with ble_local_app_msg_send to register the callback function
for APP message.

Input parameter: p_hdl, callback function

Output parameter: None

Return value: None

2.12.8. ble_sleep_mode_set

Prototype: void ble_sleep_mode_set(uint8_t mode)

Function: Set the BLE sleep mode.

Input parameter: mode: 0 means normal mode, while 1 means sleep mode. (If there are

no task to deal with, the task and BLE core are in the sleep mode)

Output parameter: None

Return value: None

2.12.9. ble_sleep_mode_get

Prototype: uint8_t ble_sleep_mode_get(void)
Function: Get the BLE sleep mode.

Input parameter: None
79

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.12.10.

2.12.11.

2.12.12.

2.12.13.

Output parameter: None
Return value: mode: 0 means normal mode, while 1 means sleep mode. (If there are no

tasks, the task and BLE core are in the sleep mode)
ble_core_is_deep_sleep

Prototype: bool ble_core_is_deep_sleep(void)

Function: Query whether BLE core is in the deep sleep mode.
Input parameter: None

Output parameter: None

Return value: true for the deep sleep mode and false for other modes
ble_modem_config

Prototype: void ble_modem_config(void)

Function: Configure the modem parameter under BLE core every time it is woken up from
the sleep mode.

Input parameter: None

Output parameter: None

Return value: None
ble_work_status_set

Prototype: void ble_work_status_set(enum ble_work_status_t mode)
Function: Set the working status of BLE, through which it can be dynamically enabled
and disable with reference to ble_enable and ble_disable among basic commands.
Input parameter: mode: 0 means enable, while 1 means disable.
Output parameter: None

Return value: None
ble_ work_status_get

Prototype: ble_work_status_t ble_ work_status_get(void)
Function: Get the BLE working status.
Input parameter: None

Output parameter: None
80

©

AN152
GD32VW553 BLE Development Guide

GigaDevice
Return value: mode: 0 means enable, while 1 means disable.
2.12.14. ble_internal_encode
Prototype: void ble_internal_encode(uint8_t *data, uint16_t len, uint8_t rand)
Function: Encode the data by using the internal algorithm.
Input parameter: data, input data
len, the length of input data
rand, random number, through which different values can be output from
the same input
Output parameter: data, encoded data
Return value: None
2.12.15. ble_internal_decode

Prototype: void ble_internal_decode(uint8_t *data, uint16_t len, uint8_t rand)
Function: Decode the data by using the internal algorithm.
Input parameter: data, input data
len, the length of input data
rand, random number, through which different values can be output from
the same input
Output parameter: data, decoded data

Return value: None

81

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

3.

3.1.

Application examples

Scan

The BLE scan function is used to find Bluetooth low energy devices in the surrounding
environment. Enabling the scan function will report the scanned devices to the application
layer.

Quickly use the function in the following steps:
1. Register an event handler to handle changes in scan status and report advertising data.

Table 3-1. Example code of scan event handler

static void ble_app_scan_mgr_evt_handler(ble_scan_evt_t event, ble_scan_data_u *p_data)
{
switch (event) {
case BLE_SCAN_EVT_STATE_CHG:
if (p_data->scan_state.scan_state == BLE_SCAN_STATE_ENABLED) {
dbg_print(NOTICE, "Ble Scan enabled status 0x%x\r\n", p_data->scan_state.reason);
} else if (p_data->scan_state.scan_state == BLE_SCAN_STATE_ENABLING) {
scan_mgr_clear_dev_list();
} else if (p_data->scan_state.scan_state == BLE_SCAN_STATE_DISABLED) {
dbg_print(NOTICE, "Ble Scan disabled status 0x%x\r\n",
p_data->scan_state.reason);

}

break;

case BLE_SCAN_EVT _ADV_RPT:
scan_mgr_report_hdlr(p_data->p_adv_rpt);

break;

}
2. Configure scan parameters through ble_scan_param_set. The structure parameters are

as follows:

type---scan type, which can be set to general discovery (general scan), limit discovery (limit
scan), etc.

prop---scan attribute, which can be set to active scan or passive scan of 1M and CODED PHY,
filter strategy, etc.

dup_filt_pol---duplicate filtering. When it is enabled, the received advertising signal will not be
repeatedly reported to the application.

scan_intv---scan interval, how often the controller scans.

82

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

3.2.

scan_win---scan window, the duration of each scan.
duration---scan duration, which indicates continuous scan when configured to 0.
period---whether to scan periodically, with the duration as the period.

Table 3-2. Example code of configure scan parameters

/**@pbrief Function for set scan parameters.

*

* @param[in] param scan parameters (see enum #ble_gap_scan_param_t)
* @retval BLE_ERR_NO_ERROR If ble scan module disable successfully.
*/

ble_status_t ble_scan_param_set(ble_gap_scan_param_t *p_param);

/** The default scan parameters are as follows*/
p_ble_scan_env->param.type = BLE_GAP_SCAN_TYPE_GEN_DISC;
p_ble_scan_env->param.prop = BLE_GAP_SCAN_PROP_PHY_1M_BIT |
BLE_GAP_SCAN_PROP_ACTIVE_1M_BIT |
BLE_GAP_SCAN_PROP_PHY_CODED_BIT |
BLE_GAP_SCAN_PROP_ACTIVE_CODED_BIT;
p_ble_scan_env->param.dup_filt_pol = BLE_GAP_DUP_FILT_EN;
p_ble_scan_env->param.scan_intv_1m = 160; // 100ms
p_ble_scan_env->param.scan_intv_coded = 160; // 100ms
p_ble_scan_env->param.scan_win_1m = 48; // 30ms
p_ble_scan_env->param.scan_win_coded = 48; // 30ms
p_ble_scan_env->param.duration = 0;

p_ble_scan_env->param.period = 0;

3. To enable the scan function, call ble_scan_enable API.

Table 3-3. Example code of enable scan

void app_scan_enable(bool update_rssi)
{
if (ble_scan_enable() != BLE_ERR_NO_ERROR) {
dbg_print(NOTICE, "app_scan_enable fail'\r\n");

return;

Advertising

The BLE advertising function is used to send advertising messages, allowing surrounding
BLE devices to discover and connect it or send periodic data, etc. It can be configured as
legacy advertising (traditional advertising), extended advertising, and periodic advertising.

Quickly use the function in the following steps:

83

AN152
GD32VW553 BLE Development Guide

1. Register an event handler to handle changes in advertising status and report received
scan requests.

Table 3-4. Example code of advertising event handler

static void app_adv_mgr_evt_hdlr(ble_adv_evt_t adv_evt, void *p_data, void *p_context)

{

app_adv_actv_t *p_adv = (app_adv_actv_t *)p_context;

switch (adv_evt) {
case BLE_ADV_EVT_STATE_CHG: {
ble_adv_state_chg_t *p_chg = (ble_adv_state_chg_t *)p_data;

ble_adv_state_t old_state = p_adv->state;

dbg_print(NOTICE, "adv state change 0x%x ==> 0x%Xx, reason 0x%x\r\n", old_state,

p_chg->state, p_chg->reason);
p_adv->state = p_chg->state;

if ((p_chg->state == BLE_ADV_STATE_CREATE) && (old_state ==
BLE_ADV_STATE_CREATING)) {
p_adv->idx = p_chg->adv_idx;
app_print("adv index %d\r\n", p_adv->idx);

app_adv_start(p_adv);
} else if ((p_chg->state == BLE_ADV_STATE_CREATE) && (old_state ==

BLE_ADV_STATE_START)) {
dbg_print(NOTICE, "adv stopped, remove %d\r\n", p_adv->remove_after_stop);

if (p_adv->remove_after_stop) {
ble_adv_remove(p_adv->idx);
p_adv->remove_after_stop = false;
}
} else if (p_chg->state == BLE_ADV_STATE_IDLE) {
free_adv_actv(p_adv);

}
} break;

case BLE_ADV_EVT_DATA_UPDATE_RSP: {

ble_adv_data_update_rsp_t *p_rsp = (ble_adv_data_update_rsp_t *)p_data;

dbg_print(NOTICE, "adv data update rsp, type %d, status 0x%x\r\n", p_rsp->type,

p_rsp->status);
} break;

case BLE_ADV_EVT_SCAN_REQ_RCV: {

84

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

ble_adv_scan_req_rcv_t *p_req = (ble_adv_scan_req_rcv_t *)p_data;
dbg_print(NOTICE, "scan req rcv, device addr %02X:%02X:%02X:%02X:%02X:%02X\r\n",
p_req->peer_addr.addr[5], p_reqg->peer_addr.addr[4], p_req->peer_addr.addr[3],
p_reg->peer_addr.addr{2], p_reqg->peer_addr.addr[1], p_reg->peer_addr.addr{0]);
} break;

default:

break;

The device sends a advertising message mainly in two steps: create a advertising and
enable it. The advertising can be enabled only in successfully created status. For
example, the following application layer creates advertising code and configures different
advertising parameters based on different advertising types.

Table 3-5. Example code of create advertising

{

ble_status_t app_adv_create(app_adv_param_t *p_param)

app_adv_actv_t *p_adyv;

ble_adv_param_t adv_param = {0};

p_adv = get_free_adv_actv();
if (p_adv == NULL) {
return BLE_ ERR_NO_RESOURCES;

p_adv->max_data_len = p_param->max_data_len;

adv_param.param.own_addr_type = p_param->own_addr_type;

if (p_param->type == BLE_ADV_TYPE_LEGACY) {
adv_param.param.type = BLE_GAP_ADV_TYPE_LEGACY,

adv_param.param.prop = p_param->prop;

if (p_param->wl_enable) {
adv_param.param.filter_pol = BLE_ GAP_ADV_ALLOW_SCAN_FAL_CON_FAL;
adv_param.param.disc_mode = BLE_ GAP_ADV_MODE_NON_DISC;

}else {
adv_param.param.filter_pol = BLE_ GAP_ADV_ALLOW_SCAN_ANY_CON_ANY;

adv_param.param.disc_mode = p_param->disc_mode;

adv_param.param.ch_map = APP_ADV_CHMAP;

adv_param.param.primary_phy = p_param->pri_phy;

85

G AN152

GigaDevice GD32VW553 BLE Development Guide

} else if (p_param->type == BLE_ADV_TYPE_EXTENDED) {
adv_param.param.type = BLE_GAP_ADV_TYPE_EXTENDED;

adv_param.param.prop = p_param->prop;

if (p_param->wl_enable) {
adv_param.param.filter_pol = BLE_GAP_ADV_ALLOW_SCAN_FAL_CON_FAL;
adv_param.param.disc_mode = BLE_GAP_ADV_MODE_NON_DISC;

}else {
adv_param.param.filter_pol = BLE_GAP_ADV_ALLOW_SCAN_ANY_CON_ANY;

adv_param.param.disc_mode = p_param->disc_mode;

adv_param.param.ch_map = APP_ADV_CHMAP;

adv_param.param.primary_phy = p_param->pri_phy;

adv_param.param.adv_sid = get_adv_sid();

adv_param.param.max_skip = 0x00;

adv_param.param.secondary_phy = p_param->sec_phy;
}else {

return BLE_GAP_ERR_INVALID_PARAM,;

if (adv_param.param.prop & BLE_GAP_ADV_PROP_DIRECTED_BIT) {
adv_param.param.peer_addr = p_param->peer_addr;
adv_param.param.disc_mode = BLE_GAP_ADV_MODE_NON_DISC;

p_adv->peer_addr = p_param->peer_addr;

if (adv_param.param.prop & BLE_GAP_ADV_PROP_ANONYMOUS_BIT) {
adv_param.param.disc_mode = BLE_GAP_ADV_MODE_NON_DISC;

p_adv->disc_mode = adv_param.param.disc_mode;

adv_param.param.adv_intv_min = APP_ADV_INT_MIN;
adv_param.param.adv_intv_max = APP_ADV _INT_MAX;

if (p_adv->disc_mode == BLE_GAP_ADV_MODE_LIM_DISC) {

adv_param.param.duration = 1000; /I 10s

if (p_param->type != BLE_ADV_TYPE_LEGACY){
adv_param.include_tx_pwr = true;

adv_param.scan_req_ntf = true;

86

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

return ble_adv_create(&adv_param, app_adv_mgr_evt_hdIr, p_adv);

Enable the advertising. After receiving the message that the advertising is successfully
created in the registered event handler, call the ble_adv_start interface to enable the
advertising. Afterwards, receiving the reported advertising status
BLE_ADV_STATE_START in the event handler means that the advertising is enabled
successfully.

The last three parameters in the ble_adv_start API are used to set advertising data, scan
response data, and periodic advertising data respectively. The content can be set directly by
the application layer or packaged by the BLE ADV module through configuration parameters.
For example, all data are set directly by the application layer in the following code.

Table 3-6. Example code of enable advertising

{

static uint8_t adv_data_1[7] = {0x08, 0x16, 0x52, 0x18, 0x18, 0x36, 0X9A};
static uint8_t per_data_1[52] = {0x33, 0x16, 0x51, 0x18, 0x40, 0x9c, 0x00, 0x01, 0x02, 0x06,

static void app_adv_start(app_adv_actv_t *p_adv)

0x00, 0x00, 0x00, 0x00, 0x0d, 0x02, 0x01, 0x08, 0x02, 0x02,
0x01, 0x03, 0x04, 0x78, 0x00, 0x02, 0x05, 0x01, 0x07, 0x03,
0x02, 0x04, 0x00, 0x02, 0x04, 0x80, 0x01, 0x06, 0x05, 0x03,
0x00, 0x04, 0x00, 0x00, 0x02, 0x06, 0x05, 0x03, 0x00, 0x08,
0x00, 0x00

2

ble_adv_data_set_t adyv;
ble_adv_data_set_t scan_rsp;
ble_adv_data_set_t per_ady;
ble_data_t adv_data;
ble_data_t per_adv_data;

adv.data_force = true;
scan_rsp.data_force = true;
per_adv.data_force = true;

adv_data.len =7;
adv_data.p_data = adv_data_1;

per_adv_data.len = 52;
per_adv_data.p_data = per_data_1;

adv.data.p_data_force = &adv_data;

87

©

AN152
GD32VW553 BLE Development Guide

GigaDevice
scan_rsp.data.p_data_force = &adv_data;
per_adv.data.p_data_force = &per_adv_data;
ble_adv_start(p_adv->idx, &adv, &scan_rsp, &per_adv);
}
3.3. GATT server application
GD32VW553 SDK provides functions such as adding/deleting services and sending
notification/indication as BLE GATT server role. Users can implement specific services
according to their requirements. For specific APIs, see BLE gatts API #4121 K125 /7. .
Here is an example of DIS to illustrate how to use these APIs to implement a service server.
The file is MSDK\ble\profile\dis\ble diss.c.
3.3.1. Adding a service
Add a service to the BLE GATT server module through the ble_gatts_svc_add function, whose
input parameters include service UUID, service attribute database, callback handler for GATT
server message, etc. Service UUID can be 16-bit, 32-bit, or 128-bit. They need to be
described in the info and table type parameters. For example, in the code of ble diss, UUID
16 is used for service UUID. When calling the ble_gatts_svc_add function, use SVC_UUID(16)
to describe it.
Table 3-7. Example code of add a service
ret = ble_gatts_svc_add(&ble_diss_svc_id, ble_dis_uuid, 0, SVC_UUID(16), ble_diss_attr_db,
BLE_DIS_HDL_NB, ble_diss_srv_cb);
3.3.2. Service attribute database

Service attribute database is an array composed of a series of ble_gatt_attr_desc_t elements.
Each element in the array is an attribute, which can be primary service, characteristic
declaration, characteristic value declaration, etc. Users can freely combine them according to
the requirements of different services.

Each attribute consists of a UUID and its attribute description. All attributes in DIS are read-
only, so just specify the RD property. For the characteristic value declaration, the maximum
size of the value can also be specified.

Table 3-8. Example code of service database
const ble_gatt_attr_desc_t ble_diss_attr_db[BLE_DIS_HDL_NB] =

{

[BLE_DIS_HDL_SVC] = {UUID_16BIT_TO_ARRAY(BLE_GATT_DECL_PRIMARY_SERVICE),
PROP(RD), 0},

88

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

[BLE_DIS_HDL_MANUFACT_NAME_CHAR] =
{UUID_16BIT_TO_ARRAY(BLE_GATT_DECL_CHARACTERISTIC), PROP(RD), 0},

[BLE_DIS_HDL_MANUFACT NAME_VAL] =
{UUID_16BIT_TO_ARRAY(BLE_DIS_CHAR_MANUF_NAME), PROP(RD),
BLE_DIS_VAL_MAX_LEN},

[BLE_DIS_HDL_MODEL_NB_CHAR] =
{UUID_16BIT_TO_ARRAY(BLE_GATT_DECL_CHARACTERISTIC), PROP(RD), 0},

[BLE_DIS_HDL_MODEL_NB_VAL] =
{UUID_16BIT_TO_ARRAY(BLE_DIS_CHAR_MODEL_NB), PROP(RD),
BLE_DIS_VAL_MAX_LEN},

[BLE_DIS_HDL_SERIAL_NB_CHAR] =
{UUID_16BIT_TO_ARRAY(BLE_GATT_DECL_CHARACTERISTIC), PROP(RD), 0},

[BLE_DIS_HDL_SERIAL_NB_VAL] =
{UUID_16BIT_TO_ARRAY(BLE_DIS_CHAR_SERIAL_NB), PROP(RD),
BLE_DIS_VAL_MAX_LEN},

[BLE_DIS_HDL_HARD REV_CHAR] =
{UUID_16BIT_TO_ARRAY(BLE_GATT_DECL_CHARACTERISTIC), PROP(RD), 0},

[BLE_DIS_HDL_HARD_REV_VAL] = {UUID_16BIT_TO_ARRAY(BLE_DIS_CHAR_HW_REV),
PROP(RD), BLE_DIS_VAL_MAX_LEN},

[BLE_DIS_HDL_FIRM_REV_CHAR] =
{UUID_16BIT_TO_ARRAY(BLE_GATT_DECL_CHARACTERISTIC), PROP(RD), 0},

[BLE_DIS_HDL_FIRM_REV_VAL] = {UUID_16BIT_TO_ARRAY(BLE_DIS_CHAR_FW_REV),
PROP(RD), BLE_DIS_VAL_MAX_LEN},

[BLE_DIS_HDL_SW_REV_CHAR] =
{UUID_16BIT_TO_ARRAY(BLE_GATT_DECL_CHARACTERISTIC), PROP(RD), 0},

[BLE_DIS_HDL_SW_REV_VAL] = {UUID_16BIT_TO_ARRAY(BLE_DIS_CHAR_SW_REV),
PROP(RD), BLE_DIS_VAL_MAX_LEN},

[BLE_DIS_HDL_SYSTEM_ID_CHAR] =
{UUID_16BIT_TO_ARRAY(BLE_GATT_DECL_CHARACTERISTIC), PROP(RD), 0},

[BLE_DIS_HDL_SYSTEM_ID_VAL] = {UUID_16BIT_TO_ARRAY(BLE_DIS_CHAR_SYS_ID),
PROP(RD), BLE_DIS_SYS_ID_LEN},

[BLE_DIS_HDL_IEEE_CHAR] =
{UUID_16BIT_TO_ARRAY(BLE_GATT_DECL_CHARACTERISTIC), PROP(RD), 0},

[BLE_DIS_HDL_IEEE_VAL] = {UUID_16BIT_TO_ARRAY(BLE_DIS_CHAR_IEEE_CERTIF),
PROP(RD), BLE_DIS_VAL_MAX_LEN},

89

©

AN152

GD32VW553 BLE Development Guide

GigaDevice
[BLE_DIS_HDL_PNP_ID_CHAR] =
{UUID_16BIT_TO_ARRAY(BLE_GATT_DECL_CHARACTERISTIC), PROP(RD), 0},
[BLE_DIS_HDL_PNP_ID_VAL] = {UUID_16BIT_TO_ARRAY(BLE_DIS_CHAR_PNP_ID),
PROP(RD), BLE_DIS_PNP_ID_LEN},
|3
3.3.3. Service attribute read and write

The last parameter of ble_gatts_svc_add is to register a GATT server event handler callback

function, which is executed when the peer client performs read or write operation on the
service, GATT server event type is BLE_SRV_EVT_GATT_OPERATION, subevent type is
BLE_SRV_EVT_READ_REQ or BLE_SRV_EVT_WRITE_REQ, subevent data structure is
ble _gatts read_req_t or ble_gatts write_req_t, in which there is an att_idx parameter

indicates the corresponding attribute index in database table when registered.

Table 3-9. Example code of attribute read and write function

{

ble_status_t ble_diss_srv_cb(ble_gatts_msg_info_t *p_srv_msg_info)

uint8_t attr_idx = 0;
uint16_tlen =0;
uint8_t attr_len = 0;
uint8_t *p_attr = NULL;

if (p_srv_msg_info->srv_msg_type == BLE_SRV_EVT_GATT_OPERATION) {
if (p_srv_msg_info->msg_data.gatts_op_info.gatts_op_sub_evt ==
BLE_SRV_EVT_READ_REQ) {

ble_gatts _read_req_t * p_read_req =

&p_srv_msg_info->msg_data.gatts_op_info.gatts_op_data.read_req;

attr_idx = p_read_reqg->att_idx;

switch (attr_idx) {

case BLE_DIS_HDL_MANUFACT_NAME_VAL: {
p_attr = ble_diss_val.manufact_name;
attr_len = ble_diss_val.manufact_name_len;

} break;

case BLE_DIS_HDL_MODEL_NB_VAL: {
p_attr = ble_diss_val.model _num;
attr_len = ble_diss_val.model_num_len;
} break;

case BLE_DIS_HDL_SERIAL_NB_VAL: {
p_attr = ble_diss_val.serial_num;

attr_len = ble_diss_val.serial_num_len;

90

©

GigaDevice

GD32VW553

AN152
BLE Development Guide

} break;

case BLE_DIS_HDL_HARD_REV_VAL: {
p_attr =ble_diss_val.hw_rey;
attr_len = ble_diss_val.hw_rev_len;

} break;

case BLE_DIS_HDL_FIRM_REV_VAL: {
p_attr = ble_diss_val.fw_rev;
attr_len = ble_diss_val.fw_rev_len;
} break;

case BLE_DIS_HDL_SW_REV_VAL: {
p_attr =ble_diss_val.sw_rev;
attr_len = ble_diss_val.sw_rev_len;
} break;

case BLE_DIS_HDL_SYSTEM_ID_VAL: {
p_attr = ble_diss_val.sys_id;
attr_len = BLE_DIS_SYS_ID_LEN;

} break;

case BLE_DIS_HDL_IEEE_VAL: {
p_attr = ble _diss_val.ieee_data;
attr_len = ble_diss_val.ieee_data_len;
} break;

case BLE_DIS_HDL_PNP_ID_VAL: {
p_attr =ble_diss_val.pnp_id;
attr_len = BLE_DIS_PNP_ID_LEN;
} break;

default:

return BLE_ATT_ERR_INVALID_HANDLE;

if (p_read_req->offset > attr_len) {

return BLE_ATT_ERR_INVALID_OFFSET:

len = ble_min(p_read_req->max_len, attr_len - p_read_req->offset);

p_read_reqg->val_len = len;

memcpy(p_read_req->p_val, p_attr, len);

91

©

AN152
GD32VW553 BLE Development Guide

GigaDevice
}
}
return BLE_ERR_NO_ERROR,;
If there is an attribute in the service that supports Client Characteristic Configuration
declaration (CCCD) and if peer client enables it, then ble_srv_ntf_ind_send interface can be
used to send a notification/indication.
Table 3-10. Example code of send notification
static void bewl_ntf_event_send(uint8_t *p_val, uint16_t len)
{
if (bcwl_env.ntf_cfg == 0) {
dbg_print(ERR, "%s fail\r\n", __func__);
return;
}
ble_gatts_ntf_ind_send(bcwl_env.conn_id, bcwl_env.prf_id, BCW_IDX_NTF, p_val, len,
BLE_GATT_NOTIFY);
3.4. BLE distribution network
Blue courier is a BLE-based WIFI network configuration function. The SSID, password,
channel, and encryption type of WiFi are transferred through the protocol to the GD device,
which can be connected to AP through such information or establish SoftAP. The link supports
data fragmentation and CRC16 integrity verification. Security relies on the encryption of the
BLE link, and the encoding method is taken for the transfer of the message containing SSID
and password to avoid transferring the plaintext over the air. Execute the ble_courier_wifi
command in the "AN153 GD32VW553 Basic Commands User Guide".
3.4.1. Process of Blue courier

By taking the example of configuring WiFi as the station to connect to AP, the following
introduces key steps of advertising, connection, service discovery, enable notification,
handshake, data transfer, and reportconnection sate.

1. After Blue courier wifi is enabled, the GD device will register the service with the GATT
server module and send the advertisingwith special advertising data. The advertising can be
defined by the user as required.

2. After the advertising is searched for through a WeChat Mini Program, the phone as GATT
Client will connect to the GD device.

3. After establishing the GATT connection, the phone will send the handshake request
message to the GD device, which will return the handshake response message upon
receiving the message.

92

AN152
GD32VW553 BLE Development Guide

GigaDevice
4. The phone can send the following messages to the GD device: Connect to WiFi; create
SoftAp; get the WiFi status.
Figure 3-1. Process of Blue courier
Phone GD32
I
- Advertising :
Establish GATT connections, discover services, enable notifications ._|
I
I
: + i
Handshake req: MTU + recv_size ._:
Handshake resp: MTU + recv size |
- |
I
I
Connect req: ssid + password -_]I
- Connect resp: status :
I
WIFI status report req ._:
- WIFI status report |
I
I
I
I
I
I
3.4.2. GATT description

To add a distribution network service, refer to the description in Adding a service.

For the description of UUID used by the distribution network service, see Table 3-11.
Distribution network service UUID #4231 K727/ /7. .

Table 3-11. Distribution network service UUID

Attribute Description

Blue courier WIFI Service UUID = 0000FFF0-0000-1000-8000-00805F9B34FB

UUID = 0000FFF1-0000-1000-8000-00805F9B34FB

o Characteristic Properties = Write
C1 Characteristic

_ max length = 256 bytes
(Client TX Buffer)

Security level=unauth (the link must be encrypted, and

pairing is required for the first time of connection)

C2 Characteristic UUID = 0000FFF2-0000-1000-8000-00805F9B34FB

93

©

GigaDevice

AN152
GD32VW553 BLE Development Guide

3.4.3.

3.4.4.

(Client RX Buffer) Characteristic Properties = Notify

max length = 256 bytes

Advertising data

The Blue courier WiFi Service UUID must be included in the advertising data so that other

devices can discover that the local device supports the BLE distribution network function. The

peer device can filter by Service UUID when searching for BLE devices. For details, see the

following table.

Table 3-12. Service UUID in advertising data

Byte Value Description

0 0x03 AD[0] Length == 3 bytes

1 0x03 AD[0] Type == 1 (Flags) Complete list of 16 bit service UUIDs.
2-3 OxFFFO 16-bit Blue courier WIFI Service UUID

Frame format

The frame format for communication between the mobile app of Blue courier and the GD

device is as follows:

Table 3-13. Frame format of blue courier

Field Size (byte)
flag 1
sequence 1
opcode 1
data len 1

data ${data_len}
crc 2

flag

The frame control field occupies a byte, where each bit has a different meaning, as listed in

the following table:

Table 3-14. Frame control field

Bit Meaning
Begin: It means whether the frame is the first fragment.
e 0: It means the frame is the remaining fragment.
e 1: It means the frame is the first fragment.
0x01 e The fragment is used to transfer long data. Only the first two bytes in the
data field of the first packet of the fragmented packet show the total
length of the data content and are used to indicate the memory size
allocated for peer receiving, namely, data = total_len + data.
0x02 End: It means whether the frame is the last fragment.

94

©

AN152

GD32VW553 BLE Development Guide

GigaDevice
e 0: It means the frame is not the last fragment.
e 1: It means the frame is the last fragment.
If both the Begin and End bits are set to 1, the packet is not fragmented.
ACK: It means whether the receiver should reply with ACK.
0x04 e 0: It means the receiver unnecessarily replies with ACK.
e 1: It means the receiver should reply with ACK.
0x08~0x80 Reserved
sequence
Sequence control field. When a frame is sent, regardless of its type, its sequence will
automatically increase by 1 to prevent replay attack. The sequence will be cleared after each
re-connection.
opcode

The opcode field occupies a byte, divided into two parts: Type and Subtype. The Type

occupies two higher bits, which indicate the frame is the management or data frame. The

Subtype occupies six lower bits, which indicate the meaning of the management or data frame.

1. Management frame (binary system: 0x0 b’00).

Table 3-15. Content of management frame

Management Meaning Description Content
frame
0x0 Handshake Handshake is used to The data field totally occupies
(b'000000) exchange the mtus at both four bytes, including two bytes
ends and the maximum for mtu and two bytes for
receiving length, determining recv_size.
the size of the fragmented Phone -> GD device:
packet and the total length of mtu + recv_size
the largest report. The mtu, GD device -> phone:
whichever is smaller, should be mtu + recv_size
taken as the fragment size at
both ends. recv_size is the
maximum peer receiving
length, which should be taken
as the maximum sending
length by the receiver.
0x1 ACK The data field of the ACK frame The data field occupies a byte,
(b'000001) uses the sequential value of the using the same sequential
response frame. value as that of the response
frame.

95

©

GigaDevice

AN152

GD32VW553 BLE Development Guide

0x2
(b'000100)

Error
reporting

The data field is used to report

error code can be defined by

the user.

an error to the peer device. The

status: lbyte

2. Data frame (binary system: Ox1 b’01).

Table 3-16. Content of data frame

Data Meaning Description Remarks
frame
0x0 Send the The data field is used to
(b'000000) | user-defined transfer the user-defined data
data. to the peer device for test.
0x1 Get the The phone sends the GD device -> phone:
(b'000001) | information of | message with a length of O to Structure of each ssid:
the WiFi scan | the GD device. Upon receiving len+rssi+mode+ssid
list. the message, the GD device len = 2byte(rssi+mode) + ssid
will trigger WiFi scan and send length
the scan information through
the message to the phone.
0x2 Send the Upon receiving the information Phone -> GD device:
(b'000010) connection of AP to be connected by the ssid_len + ssid + password_len +
request of the STA device, the GD device password + random
STA device. will trigger WiFi connection GD device -> phone:
and send the connection status
result to the phone. The sent
data should be randomly ssid_len, password_len, random,
encoded to avoid generating status: 1byte
the same code data.
0x3 Send the The phone sends the GD device -> phone:
(b'000011) | disconnection | message with a length of O to status
request of the | the GD device. Upon receiving
STA device. the message, the GD device status: 1byte
will trigger WiFi disconnection
and send the status to the
phone.
0x4 Send the Upon receiving the information Phone -> GD device:
(b'000100) request of of AP to be created by the ssid_len + ssid + password_len +
creating the device, the GD device will password + channel + akm +
SoftAP trigger softAp creation and hide + random
mode. send the creation result to the GD device -> phone:

96

©

AN152

GD32VW553 BLE Development Guide

GigaDevice
phone. The sent data should status
be randomly encoded to avoid
generating the same code ssid_len, password_len, channel,
data. akm, hide, random, status: 1lbyte
0x5 Send the The phone sends the GD device -> phone:
(b'000101) request of message with a length of 0 to status
stopping the | the GD device. Upon receiving
SoftAP the message, the GD device status: 1byte
mode. will trigger softAp stopping
and send the status to the
phone.
0x6 Get WiFi The phone sends the It will notify the phone of the

(b'000110) status. message with a length of O to current device mode, connection

the GD device. After receiving status, SSID, and channel by

the message, the GD device reporting the WiFi connection

will report WiFi status to the status to the phone. For the

phone. message content structure, refer

to the app implementation end.

crc

crc16 is used for integrity verification for communication through Blue courier by making a

calculation based on four parts, namely sequence, opcode, data_len, and data.

97

e AN152

GigaDevice GD32VW553 BLE Development Guide

4. Revision history

Table 4-1. Revision history

Revision No. Description Date
1.0 Initial release Dec.5, 2023

98

c AN152

GigaDevice GD32VW553 BLE Development Guide

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any
product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and
treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and
treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and

brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability
arising out of the application or use of any Product described in this document. Any information provided in this document is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality
and safety of any application made of this information and any resulting product. Except for customized products which have been
expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business,
industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components
in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control
instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments,
life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution
control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury,
death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling
the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers
shall and hereby do release the Company as well as its suppliers and/or distributors from any claim, damage, or other liability arising
from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as its suppliers and/or
distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death,

arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes,

corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2023 GigaDevice — All rights reserved

99

	Table of Contents
	List of Figures
	List of Tables
	1. Overview of BLE SDK
	1.1. BLE software framework

	2. BLE API
	2.1. BLE adapter API
	2.1.1. Adapter message type
	2.1.2. ble_adp_init
	2.1.3. ble_adp_callback_register
	2.1.4. ble_adp_reset
	2.1.5. ble_adp_cfg
	2.1.6. ble_adp_chann_map_set
	2.1.7. ble_adp_loc_irk_set
	2.1.8. ble_adp_loc_irk_get
	2.1.9. ble_adp_identity_addr_get
	2.1.10. ble_adp_name_set
	2.1.11. ble_adp_local_ver_get
	2.1.12. ble_adp_sugg_dft_data_len_get
	2.1.13. ble_adp_tx_pwr_range_get
	2.1.14. ble_adp_max_data_len_get
	2.1.15. ble_adp_adv_sets_num_get
	2.1.16. ble_adp_addr_resolve
	2.1.17. ble_adp_static_random_addr_gen
	2.1.18. ble_adp_resolvable_private_addr_gen
	2.1.19. ble_adp_none_resolvable_private_addr_gen
	2.1.20. ble_adp_test_tx
	2.1.21. ble_adp_test_rx
	2.1.22. ble_adp_test_end

	2.2. BLE advertising API
	2.2.1. Advertising message type
	2.2.2. ble_adv_init
	2.2.3. ble_adv_deinit
	2.2.4. ble_adv_create
	2.2.5. ble_adv_start
	2.2.6. ble_adv_restart
	2.2.7. ble_adv_stop
	2.2.8. ble_adv_remove
	2.2.9. ble_adv_data_update

	2.3. BLE advertising data API
	2.3.1. ble_adv_find
	2.3.2. ble_adv_cmpl_name_find
	2.3.3. ble_adv_short_name_find
	2.3.4. ble_adv_srv_uuid_find
	2.3.5. ble_adv_appearance_find

	2.4. BLE scan API
	2.4.1. Scan message type
	2.4.2. ble_scan_init
	2.4.3. ble_scan_reinit
	2.4.4. ble_scan_callback_register
	2.4.5. ble_scan_enable
	2.4.6. ble_scan_disable
	2.4.7. ble_scan_param_set

	2.5. BLE connection API
	2.5.1. Connection message type
	2.5.2. ble_conn_init
	2.5.3. ble_conn_callback_register
	2.5.4. ble_conn_callback_unregister
	2.5.5. ble_conn_connect
	2.5.6. ble_conn_disconnect
	2.5.7. ble_conn_connect_cancel
	2.5.8. ble_conn_sec_info_set
	2.5.9. ble_conn_peer_name_get
	2.5.10. ble_conn_peer_feats_get
	2.5.11. ble_conn_peer_appearance_get
	2.5.12. ble_conn_peer_version_get
	2.5.13. ble_conn_peer_slave_prefer_param_get
	2.5.14. ble_conn_peer_addr_resolution_support_get
	2.5.15. ble_conn_peer_rpa_only_get
	2.5.16. ble_conn_peer_db_hash_get
	2.5.17. ble_conn_phy_get
	2.5.18. ble_conn_phy_set
	2.5.19. ble_conn_pkt_size_set
	2.5.20. ble_conn_chann_map_get
	2.5.21. ble_conn_ping_to_get
	2.5.22. ble_conn_ping_to_set
	2.5.23. ble_conn_rssi_get
	2.5.24. ble_conn_param_update_req
	2.5.25. ble_conn_per_adv_sync_trans
	2.5.26. ble_conn_name_get_cfm
	2.5.27. ble_conn_appearance_get_cfm
	2.5.28. ble_conn_slave_prefer_param_get_cfm
	2.5.29. ble_conn_name_set_cfm
	2.5.30. ble_conn_appearance_set_cfm
	2.5.31. ble_conn_param_update_cfm
	2.5.32. ble_conn_local_tx_pwr_get
	2.5.33. ble_conn_peer_tx_pwr_get
	2.5.34. ble_conn_tx_pwr_report_ctrl
	2.5.35. ble_conn_path_loss_ctrl

	2.6. BLE security API
	2.6.1. Security message type
	2.6.2. ble_sec_init
	2.6.3. ble_sec_callback_register
	2.6.4. ble_sec_security_req
	2.6.5. ble_sec_bond_req
	2.6.6. ble_sec_encrypt_req
	2.6.7. ble_sec_key_press_notify
	2.6.8. ble_sec_key_display_enter_cfm
	2.6.9. ble_sec_oob_req_cfm
	2.6.10. ble_sec_nc_cfm
	2.6.11. ble_sec_ltk_req_cfm
	2.6.12. ble_sec_irk_req_cfm
	2.6.13. ble_sec_csrk_req_cfm
	2.6.14. ble_sec_encrypt_req_cfm
	2.6.15. ble_sec_pairing_req_cfm
	2.6.16. ble_sec_oob_data_req_cfm
	2.6.17. ble_sec_oob_data_gen

	2.7. BLE list API
	2.7.1. List message type
	2.7.2. ble_list_init
	2.7.3. ble_list_callback_register
	2.7.4. ble_fal_op
	2.7.5. ble_fal_list_set
	2.7.6. ble_fal_clear
	2.7.7. ble_fal_size_get
	2.7.8. ble_ral_op
	2.7.9. ble_ral_list_set
	2.7.10. ble_ral_clear
	2.7.11. ble_ral_size_get
	2.7.12. ble_loc_rpa_get
	2.7.13. ble_peer_rpa_get
	2.7.14. ble_pal_op
	2.7.15. ble_pal_list_set
	2.7.16. ble_pal_clear
	2.7.17. ble_pal_size_get

	2.8. BLE periodic sync API
	2.8.1. Periodic sync message type
	2.8.2. ble_per_sync_init
	2.8.3. ble_per_sync_callback_register
	2.8.4. ble_per_sync_start
	2.8.5. ble_per_sync_cancel
	2.8.6. ble_per_sync_terminate
	2.8.7. ble_per_sync_ctrl

	2.9. BLE storage API
	2.9.1. ble_storage_init
	2.9.2. ble_peer_data_bond_store
	2.9.3. ble_peer_data_bond_load
	2.9.4. ble_peer_data_delete
	2.9.5. ble_peer_all_addr_get

	2.10. BLE gatts API
	2.10.1. gatts message type
	2.10.2. ble_gatts_init
	2.10.3. ble_gatts_svc_add
	2.10.4. ble_gatts_svc_rmv
	2.10.5. ble_gatts_ntf_ind_send
	2.10.6. ble_gatts_ntf_ind_send_by_handle
	2.10.7. ble_gatts_ntf_ind_mtp_send
	2.10.8. ble_gatts_mtu_get
	2.10.9. ble_gatts_svc_attr_write_cfm
	2.10.10. ble_gatts_svc_attr_read_cfm
	2.10.11. ble_gatts_get_start_hdl

	2.11. BLE gattc API
	2.11.1. gattc message type
	2.11.2. ble_gattc_init
	2.11.3. ble_gattc_start_discovery
	2.11.4. ble_gattc_svc_reg
	2.11.5. ble_gattc_read
	2.11.6. ble_gattc_write_req
	2.11.7. ble_gattc_write_cmd
	2.11.8. ble_gattc_write_signed
	2.11.9. ble_gattc_mtu_update
	2.11.10. ble_gattc_mtu_get
	2.11.11. ble_gattc_find_char_handle
	2.11.12. ble_gattc_find_desc_handle

	2.12. BLE export API
	2.12.1. ble_stack_init
	2.12.2. ble_stack_task_suspend
	2.12.3. ble_stack_task_resume
	2.12.4. ble_stack_task_init
	2.12.5. ble_app_task_init
	2.12.6. ble_local_app_msg_send
	2.12.7. ble_app_msg_hdl_reg
	2.12.8. ble_sleep_mode_set
	2.12.9. ble_sleep_mode_get
	2.12.10. ble_core_is_deep_sleep
	2.12.11. ble_modem_config
	2.12.12. ble_work_status_set
	2.12.13. ble_ work_status_get
	2.12.14. ble_internal_encode
	2.12.15. ble_internal_decode

	3. Application examples
	3.1. Scan
	3.2. Advertising
	3.3. GATT server application
	3.3.1. Adding a service
	3.3.2. Service attribute database
	3.3.3. Service attribute read and write

	3.4. BLE distribution network
	3.4.1. Process of Blue courier
	3.4.2. GATT description
	3.4.3. Advertising data
	3.4.4. Frame format
	flag
	sequence
	opcode
	crc

	4. Revision history

